Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We construct a complete topological invariant of foliations of finite type defined by smooth functions on two-dimensional noncompact orientable manifolds. In particular, we describe a complete topological classification of noncompact bifurcations of such foliations. We establish a natural one-to-one correspondence between the set of all such bifurcations and the set of oriented coloured graphs of a special form. As a consequence, we obtain the Liouville and trajectory classifications of Hamiltonian systems of finite type on noncompact two-dimensional manifolds.Bibliography: 25 titles.

作者简介

Stanislav Nikolaenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Institute of Physics and Technology (National Research University)

参考

  1. А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77
  2. А. Т. Фоменко, “Топология поверхностей постоянной энергии некоторых интегрируемых гамильтоновых систем и препятствия к интегрируемости”, Изв. АН СССР. Сер. матем., 50:6 (1986), 1276–1307
  3. А. Т. Фоменко, “Теория Морса интегрируемых гамильтоновых систем”, Докл. АН СССР, 287:5 (1986), 1071–1075
  4. А. Т. Фоменко, “Топологические инварианты гамильтоновых систем, интегрируемых по Лиувиллю”, Функц. анализ и его прил., 22:4 (1988), 38–51
  5. А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
  6. А. В. Болсинов, “Гладкая траекторная классификация интегрируемых гамильтоновых систем с двумя степенями свободы”, Матем. сб., 186:1 (1995), 3–28
  7. А. В. Болсинов, А. Т. Фоменко, “Траекторная эквивалентность интегрируемых гамильтоновых систем с двумя степенями свободы. Теорема классификации. I”, Матем. сб., 185:4 (1994), 27–80
  8. А. В. Болсинов, А. Т. Фоменко, “Траекторные инварианты интегрируемых гамильтоновых систем. Случай простых систем. Траекторная классификация систем типа Эйлера в динамике твердого тела”, Изв. РАН. Сер. матем., 59:1 (1995), 65–102
  9. А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
  10. В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
  11. В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160
  12. О. А. Загрядский, “Бертрановские системы и их фазовое пространство”, Наука и образование, 2014, № 12, 365–386
  13. Д. А. Федосеев, “Бифуркационные диаграммы натуральных гамильтоновых систем на многообразиях Бертрана”, Вестн. Моск. ун-та. Сер. 1. Матем. Мех., 2015, № 1, 62–65
  14. Д. В. Новиков, “Топологические особенности интегрируемого случая Соколова на алгебре Ли $mathrm{e}(3)$”, Матем. сб., 202:5 (2011), 127–160
  15. S. S. Nikolaenko, “Topological classification of the Goryachev Integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060
  16. Д. А. Федосеев, А. Т. Фоменко, “Некомпактные особенности интегрируемых гамильтоновых систем”, Фундамент. и прикл. матем., 21:6 (2016), 217–243
  17. E. Fiorani, G. Giachetta, G. Sardanashvily, “The Liouville–Arnold–Nekhoroshev theorem for non-compact invariant manifolds”, J. Phys. A, 36:7 (2003), 101–107
  18. Е. А. Кудрявцева, Т. А. Лепский, “Интегрируемые гамильтоновы системы с неполными потоками и многоугольники Ньютона”, Современные проблемы математики и механики, 6:3 (2011), 42–55
  19. Е. А. Кудрявцева, Т. А. Лепский, “Топология лагранжевых слоений интегрируемых систем с гиперэллиптическим гамильтонианом”, Матем. сб., 202:3 (2011), 69–106
  20. К. Р. Алeшкин, “Топология интегрируемых систем с неполными полями”, Матем. сб., 205:9 (2014), 49–64
  21. Е. А. Кудрявцева, “Аналог теоремы Лиувилля для интегрируемых гамильтоновых систем с неполными потоками”, Докл. РАН, 445:4 (2012), 383–385
  22. Е. А. Кудрявцева, Т. А. Лепский, “Топология слоений и теорема Лиувилля для интегрируемых систем с неполными потоками”, Тр. сем. по векторному и тензорному анализу, № 27, 2011, 106–149
  23. В. В. Шарко, “Гладкие функции на некомпактных поверхностях”, Зб. праць Iн-ту матем. НАН Украïни, 3:3 (2006), 443–473
  24. A. O. Prishlyak, “Topological equivalence of smooth functions with isolated critical points on a closed surface”, Topology Appl., 119:3 (2002), 257–267
  25. А. А. Ошемков, “Функции Морса на двумерных поверхностях. Кодирование особенностей”, Новые результаты в теории топологической классификации интегрируемых систем, Сборник статей, Тр. МИАН, 205, Наука, М., 1994, 131–140

补充文件

附件文件
动作
1. JATS XML

版权所有 © Nikolaenko S.S., 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».