On $C^m$-reflection of harmonic functions and $C^m$-approximation by harmonic polynomials

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We obtain several new sharp $C^m$-continuity conditions, both necessary and sufficient, for operators of harmonic reflection of functions over boundaries of simple Caratheodory domains in $\mathbb R^N$. These results are based on a new criterion (also obtained in this paper) for $C^m$-continuity of the Poisson operator in the aforesaid domains. As corollaries, we give new sufficient conditions for $C^m$-approximability of functions by harmonic polynomials on boundaries of simple Caratheodory domains in $\mathbb R^N$. Bibliography: 17 titles.

Авторлар туралы

Petr Paramonov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Bauman Moscow State Technical University

Email: petr.paramonov@list.ru

Konstantin Fedorovskiy

Bauman Moscow State Technical University; Saint Petersburg State University

Email: kfedorovs@yandex.ru
Doctor of physico-mathematical sciences, Associate professor

Әдебиет тізімі

  1. П. В. Парамонов, “О $operatorname{Lip}^m$- и $C^m$-отражении гармонических функций относительно границ областей Каратеодори в $mathbb R^2$”, Вестн. МГТУ им. Н. Э. Баумана. Сер. Естественные науки, 2018, № 4, 36–45
  2. K. Fedorovskiy, P. Paramonov, “On $operatorname{Lip}^m$-reflection of harmonic functions over boundaries of simple Caratheodory domains”, Anal. Math. Phys., 9:3 (2019), 1031–1042
  3. H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402
  4. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  5. D. H. Armitage, “Reflection principles for harmonic and polyharmonic functions”, J. Math. Anal. Appl., 65:1 (1978), 44–55
  6. D. Khavinson, H. S. Shapiro, “Remarks on the reflection principle for harmonic functions”, J. Anal. Math., 54 (1990), 60–76
  7. D. Khavinson, “On reflection of harmonic Functions in surfaces of revolution”, Complex Variables Theory Appl., 17:1-2 (1991), 7–14
  8. P. Ebenfelt, D. Khavinson, “On point-to-point reflection of harmonic functions across real-analytic hypersurfaces in $mathbb R^n$”, J. Anal. Math., 68 (1996), 145–182
  9. S. J. Gardiner, H. Render, “A reflection result for harmonic functions which vanish on a cylindrical surface”, J. Math. Anal. Appl., 443:1 (2016), 81–91
  10. E. Schippers, W. Staubach, “Harmonic reflection in quasicircles and well-posedness of a Riemann–Hilbert problem on quasidisks”, J. Math. Anal. Appl., 448:2 (2017), 864–884
  11. B. P. Belinskiy, T. V. Savina, “The Schwarz reflection principle for harmonic functions in $mathbb R^2$ subject to the Robin condition”, J. Math. Anal. Appl., 348:2 (2008), 685–691
  12. F. Y. Maeda, N. Suzuki, “The integrability of superharmonic functions on Lipschitz domains”, Bull. London Math. Soc., 21:3 (1989), 270–278
  13. K. Miller, “Extremal barriers on cones with Phragmèn–Lindelöf theorems and other applications”, Ann. Mat. Pura Appl. (4), 90 (1971), 297–329
  14. J. Mateu, J. Orobitg, “Lipschitz approximation by harmonic functions and some applications to spectral sinthesis”, Indiana Univ. Math. J., 39:3 (1990), 703–736
  15. J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187
  16. П. В. Парамонов, “$C^m$-приближения гармоническими полиномами на компактных множествах в $mathbb{R}^n$”, Матем. сб., 184:2 (1993), 105–128
  17. М. Я. Мазалов, П. В. Парамонов, К. Ю. Федоровский, “Условия $C^m$-приближаемости функций решениями эллиптических уравнений”, УМН, 67:6(408) (2012), 53–100

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Paramonov P.V., Fedorovskiy K.Y., 2020

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).