Vanishing properties of $f$-minimal hypersurfaces in a complete smooth metric measure space
- Autores: Mi R.1
-
Afiliações:
- Northwest Normal University
- Edição: Volume 211, Nº 11 (2020)
- Páginas: 118-128
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133369
- DOI: https://doi.org/10.4213/sm9268
- ID: 133369
Citar
Resumo
Bibliografia
- D. Bakry, M. Emery, “Diffusions hypercontractives”, Seminaire de probabilites XIX 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206
- M. Batista, H. Mirandola, “Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces”, Ann. Mat. Pura Appl. (4), 194:6 (2015), 1859–1872
- M. P. Cavalcante, H. Mirandola, F. Vitorio, “$L^{2}$-harmonic $1$-forms on submanifolds with finite total curvature”, J. Geom. Anal., 24:1 (2014), 205–222
- Huai-Dong Cao, Ying Shen, Shunhui Zhu, “The structure of stable minimal hypersurfaces in $mathbb{R}^{n+1}$”, Math. Res. Lett., 4:5 (1997), 637–644
- Xu Cheng, Tito Mejia, Detang Zhou, “Simons-type equation for $f$-minimal hypersurfaces and applications”, J. Geom. Anal., 25:4 (2015), 2667–2686
- Xu Cheng, Tito Mejia, Detang Zhou, “Stability and compactness for complete $f$-minimal surfaces”, Trans. Amer. Math. Soc., 367:6 (2015), 4041–4059
- M. do Carmo, C. K. Peng, “Stable complete minimal surfaces in $R^3$ are planes”, Bull. Amer. Math. Soc. (N.S.), 1:6 (1979), 903–906
- Nguyen Thac Dung, Keomkyo Seo, “Vanishing theorems for $L^{2}$ harmonic $1$-forms on complete submanifolds in a Riemanian manifold”, J. Math. Anal. Appl., 423:2 (2015), 1594–1609
- D. Impera, M. Rimoldi, “Stability properties and topology at infinity of $f$-minimal hypersurfaces”, Geom. Dedicata, 178 (2015), 21–47
- P. Li, R. Schoen, “$L^{p}$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3-4 (1984), 279–301
- A. Lichnerowicz, “Varietes riemanniennes à tenseur $C$ non negatif”, C. R. Acad. Sci. Paris Ser. A-B, 271 (1970), A650–A653
- Gand Liu, “Stable weighted minimal surfaces in manifolds with non-negative Bakry–Emery Ricci tensor”, Comm. Anal. Geom., 21:5 (2013), 1061–1079
- J. Lott, C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, Ann. of Math. (2), 169:3 (2009), 903–991
- J. Lott, “Some geometric properties of the Bakry–Emery–Ricci tensor”, Comment. Math. Helv., 78:4 (2003), 865–883
- R. Miyaoka, “$L^2$ harmonic $1$-forms on a complete stable minimal hypersurface”, Geometry and global analysis (Sendai, 1993), Tohoku Univ., Sendai, 1993, 289–293
- F. Morgan, “Manifolds with density”, Notices Amer. Math. Soc., 52:8 (2005), 853–858
- Keomkyo Seo, “$L^{2}$ harmonic $1$-forms on minimal submanifolds in hyperbolic space”, J. Math. Anal. Appl., 371:2 (2010), 546–551
- Keomkyo Seo, “Rigidity of minimal submanifolds in hyperbolic space”, Arch. Math. (Basel), 94:2 (2010), 173–181
- Keomkyo Seo, “$L^{p}$ harmonic $1$-forms and first eigenvalue of a stable minimal hypersurface”, Pacific J. Math., 268:1 (2014), 205–229
- K.-T. Sturm, “On the geometry of metric measure spaces. I”, Acta. Math., 196:1 (2006), 65–131
- K.-T. Sturm, “On the geometry of metric measure spaces. II”, Acta. Math., 196:1 (2006), 133–177
- M. Vieira, “Harmonic forms on manifolds with non-negative Bakry–Emery–Ricci curvature”, Arch. Math. (Basel), 101:6 (2013), 581–590
- Guofang Wei, W. Wylie, “Comparison geometry for the Bakry–Emery–Ricci tensor”, J. Differential Geom., 83:2 (2009), 377–405
- Shing-Tung Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–670
- Gabjin Yun, “Total scalar curvature and $L^{2}$ harmonic $1$-forms on a minimal hypersuface in Euclidean space”, Geom. Dedicata, 89 (2002), 135–141
- Gabjin Yun, Keomkyo Seo, “Weighted volume growth and vanishing properties of $f$-minimal hypersurfaces in a weighted manifold”, Nonlinear Anal., 180 (2019), 264–283
Arquivos suplementares
