Homological dimensions of Banach spaces
- Authors: Cabello Sánchez F.1, Castillo J.M.1, García R.1
-
Affiliations:
- Universidad de Extremadura
- Issue: Vol 212, No 4 (2021)
- Pages: 91-112
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133382
- DOI: https://doi.org/10.4213/sm9425
- ID: 133382
Cite item
Abstract
About the authors
Félix Cabello Sánchez
Universidad de Extremadura
Jesús María Fernández Castillo
Universidad de ExtremaduraDoctor of physico-mathematical sciences, Professor
Ricardo García
Universidad de Extremadura
References
- B. Mitchell, Theory of categories, Pure Appl. Math., 17, Academic Press, New York–London, 1965, xi+273 pp.
- L. Frerick, D. Sieg, Exact categories in functional analysis, Script, 2010, viii+241 pp.
- M. Wodzicki, “Homological dimensions of Banach spaces”, Linear and complex analysis problem book 3, Part I, Lecture Notes in Math., 1573, Springer-Verlag, Berlin, 1994, 34–35
- В. П. Паламодов, “Функтор проективного предела в категории топологических линейных пространств”, Матем. сб., 75(117):4 (1968), 567–603
- В. П. Паламодов, “Гомологические методы в теории локально выпуклых пространств”, УМН, 26:1(157) (1971), 3–65
- J. Wengenroth, Derived functors in functional analysis, Lecture Notes in Math., 1810, Springer-Verlag, Berlin, 2003, viii+134 pp.
- J. Wengenroth, “A conjecture of Palamodov about the functors $operatorname{Ext}^k$ in the category of locally convex spaces”, J. Funct. Anal., 201:2 (2003), 561–571
- F. Cabello Sanchez, J. M. F. Castillo, N. J. Kalton, “Complex interpolation and twisted twisted Hilbert spaces”, Pacific J. Math., 276:2 (2015), 287–307
- F. Cabello Sanchez, J. M. F. Castillo, W. H. G. Corrêa, V. Ferenczi, R. Garcia, “On the $operatorname{Ext}^2$-problem in Hilbert spaces”, J. Funct. Anal., 280:4 (2021), 108863, 36 pp.
- G. Köthe, “Hebbare lokalkonvexe Räume”, Math. Ann., 165 (1966), 181–195
- J. Lindenstrauss, H. P. Rosenthal, “The $mathscr L_p$-spaces”, Israel J. Math., 7 (1969), 325–349
- A. Aviles, F. Cabello Sanchez, J. M. F. Castillo, M. Gonzalez, Y. Moreno, Separably injective Banach spaces, Lecture Notes in Math., 2132, Springer, Cham, 2016, xxii+217 pp.
- J. Lindenstrauss, “On a certain subspace of $ell_1$”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 12 (1964), 539–542
- N. J. Kalton, A. Pelczynski, “Kernels of surjections from $mathscr L_1$-spaces with an application to Sidon sets”, Math. Ann., 309:1 (1997), 135–158
- F. Cabello Sanchez, J. M. F. Castillo, “Uniform boundedness and twisted sums of Banach spaces”, Houston J. Math., 30:2 (2004), 523–536
- J. M. F. Castillo, Y. Moreno, J. Suarez, “On Lindenstrauss–Pelczynski spaces”, Studia Math., 174:3 (2006), 213–231
- A. Sobczyk, “On the extension of linear transformations”, Trans. Amer. Math. Soc., 55 (1944), 153–169
- M. Zippin, “The separable extension problem”, Israel J. Math., 26:3-4 (1977), 372–387
- W. B. Johnson, M. Zippin, “Extension of operators from weak*-closed subspaces of $ell_1$ into $C(K)$ spaces”, Studia Math., 117:1 (1995), 43–55
- J. M. F. Castillo, M. Gonzalez, Three-space problems in Banach space theory, Lecture Notes in Math., 1667, Springer-Verlag, Berlin, 1997, xii+267 pp.
- P. Enflo, J. Lindenstrauss, G. Pisier, “On the “Three space problem””, Math. Scand., 36 (1975), 199–210
- N. J. Kalton, N. T. Peck, “Twisted sums of sequence spaces and the three space problem”, Trans. Amer. Math. Soc., 255 (1979), 1–30
- J. Bourgain, “A counterexample to a complementation problem”, Compositio Math., 43:1 (1981), 133–144
- J. Lindenstrauss, H. P. Rosenthal, “Automorphisms in $c_0$, $ell_1$ and $m$”, Israel J. Math., 9 (1969), 227–239
- J. Wengenroth, “Palamodov's questions from homological methods in the theory of locally convex spaces”, Methods in Banach space theory (Caceres, 2004), London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006, 169–182
- J. M. F. Castillo, R. Garcia, “Bilinear forms and the $operatorname{Ext}^2$-problem in Banach spaces”, Linear Algebra Appl., 566 (2019), 199–211
- A. Aviles, F. Cabello Sanchez, J. M. F. Castillo, M. Gonzalez, Y. Moreno, “Corrigendum to “On separably injective Banach spaces””, Adv. Math., 318 (2017), 737–747
- W. B. Johnson, J. Lindenstrauss, “Some remarks on weakly compactly generated Banach spaces”, Israel J. Math., 17 (1974), 219–230
- W. Marciszewski, G. Plebanek, “Extension operators and twisted sums of $c_0$ and $C(K)$ spaces”, J. Funct. Anal., 274:5 (2018), 1491–1529
- F. Albiac, N. J. Kalton, Topics in Banach space theory, Grad. Texts in Math., 233, 2nd ed., Springer, Cham, 2016, xx+508 pp.
- С. Маклейн, Гомология, ИО НФМИ, Новокузнецк, 2000, 540 с.
- С. И. Гельфанд, Ю. И. Манин, Методы гомологической алгебры, т. I, Наука, М., 1988, 416 с.
- А. Я. Хелемский, Гомология в банаховых и топологических алгебрах, Изд-во Моск. ун-та, M., 1986, 288 с.
- W. B. Johnson, M. Zippin, “On subspaces of quotients of $(sum G_n )_{ell_p}$ and $(sum G_n )_{c_0}$”, Israel J. Math., 13 (1972), 311–316
- J. M. F. Castillo, Y. Moreno, “Sobczyk's theorem and the bounded approximation property”, Studia Math., 201:1 (2010), 1–19
- M. I. Kadec, “On complementably universal Banach spaces”, Studia Math., 40 (1971), 85–89
- A. Pelczynski, “Universal bases”, Studia Math., 32 (1969), 247–268
- A. Pelczynski, P. Wojtaszczyk, “Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces”, Studia Math., 40 (1971), 91–108
- N. J. Kalton, N. T. Peck, J. W. Roberts, An $F$-space sampler, London Math. Soc. Lecture Note Ser., 89, Cambridge Univ. Press, Cambridge, 1984, xii+240 pp.
- N. J. Kalton, “Quasi-Banach spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1099–1130
- W. J. Stiles, “Some properties of $ell_p$, $0 < p < 1$”, Studia Math., 42 (1972), 109–119
- В. А. Смирнов, Чан Хуен, “О функторе Ext в категории линейных топологических пространств”, Изв. АН СССР. Сер. матем., 54:1 (1990), 188–200
- M. Ribe, “Examples for the nonlocally convex three space problem”, Proc. Amer. Math. Soc., 73:3 (1979), 351–355
- N. J. Kalton, “The three space problem for locally bounded $F$-spaces”, Compositio Math., 37:3 (1978), 243–276
- J. W. Roberts, “A nonlocally convex $F$-space with the Hahn–Banach approximation property”, Banach spaces of analytic functions (Kent State Univ., Kent, OH, 1976), Lecture Notes in Math., 604, Springer, Berlin, 1977, 76–81
- В. А. Смирнов, В. А. Шейхман, “О продолжении однородных функционалов с заданной выпуклостью”, Матем. заметки, 50:5 (1991), 90–96
- S. Dierolf, Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Ludwing-Maximilians-Univ., München, 1974, 85 pp.
- N. J. Kalton, J. W. Roberts, “Uniformly exhaustive submeasures and nearly additive set functions”, Trans. Amer. Math. Soc., 278:2 (1983), 803–816
Supplementary files
