The preservation of threshold resonances and the splitting off of eigenvalues from the threshold of the continuous spectrum of quantum waveguides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Threshold resonance arises on the lower bound of the continuous spectrum of a quantum waveguide (the Dirichlet problem for the Laplace operator), provided that for this value of the spectral parameter a nontrivial bounded solution exists which is either a trapped wave decaying at infinity or an almost standing wave stabilizing at infinity. In many problems in asymptotic analysis, it is important to be able to distinguish which of the waves initiates the threshold resonance; in this work we discuss several ways to clarify its properties. In addition, we demonstrate how the threshold resonance can be preserved by fine tuning the profile of the waveguide wall, and we obtain asymptotic expressions for the near-threshold eigenvalues appearing in the discrete or continuous spectrum when the threshold resonance is destroyed. Bibliography: 60 titles.

About the authors

Sergei Aleksandrovich Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences

Email: srgnazarov@yahoo.co.uk
Doctor of physico-mathematical sciences, Professor

References

  1. S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559
  2. P. Exner, H. Kovar̆ik, Quantum waveguides, Theoret. Math. Phys., 22, Springer, Cham, 2015, xxii+382 pp.
  3. D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752
  4. С. А. Назаров, “Условия сопряжения в одномерной модели прямоугольной решетки тонких квантовых волноводов”, Проблемы матем. анализа, 87, Тамара Рожковская, Новосибирск, 2016, 153–173
  5. S. A. Nazarov, K. Ruotsalainen, P. Uusitalo, “Multifarious transmission conditions in the graph models of carbon nano-structures”, Mater. Phys. Mech., 29:2 (2016), 107–115
  6. С. А. Назаров, “Почти стоячие волны в периодическом волноводе с резонатором и околопороговые собственные числа”, Алгебра и анализ, 28:3 (2016), 111–160
  7. Н. А. Умов, Уравнения движения энергии в телах, Тип. Ульриха и Шульце, Одесса, 1874, 58 с.
  8. Л. И. Мандельштам, Лекции по оптике теории относительности и квантовой механике, Наука, М., 1972, 438 с.
  9. И. И. Ворович, В. А. Бабешко, Динамические смешанные задачи теории упругости для неклассических областей, Наука, М., 1979, 320 с.
  10. С. А. Назаров, Б. А. Пламеневский, Эллиптические задачи в областях с кусочно гладкой границей, Наука, М., 1991, 336 с.
  11. J. H. Poynting, “On the transfer of energy in the electromagnetic field”, Philos. Trans. R. Soc. Lond., 175 (1884), 343–361
  12. С. А. Назаров, “Лакуны и собственные частоты в спектре периодического акустического волновода”, Акустический журн., 59:3 (2013), 312–321
  13. С. А. Назаров, “Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов”, Изв. РАН. Сер. матем., 84:6 (2020), 73–130
  14. С. А. Назаров, “Асимптотика собственных чисел на непрерывном спектре регулярно возмущенного квантового волновода”, ТМФ, 167:2 (2011), 239–263
  15. K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925
  16. Ф. Л. Бахарев, С. А. Назаров, “Критерии отсутствия и наличия ограниченных решений на пороге непрерывного спектра в объединении квантовых волноводов”, Алгебра и анализ, 32:6 (2020), 1–23
  17. С. А. Назаров, “Критерий существования затухающих решений в задаче о резонаторе с цилиндрическим волноводом”, Функц. анализ и его прил., 40:2 (2006), 20–32
  18. С. А. Назаров, “Ограниченные решения в $mathrm{T}$-образном волноводе и спектральные свойства лестницы Дирихле”, Ж. вычисл. матем. и матем. физ., 54:8 (2014), 1299–1318
  19. С. А. Назаров, “Спектр прямоугольных решеток квантовых волноводов”, Изв. РАН. Сер. матем., 81:1 (2017), 31–92
  20. С. А. Назаров, “Вариационный и асимптотический методы поиска собственных чисел под порогом непрерывного спектра”, Сиб. матем. журн., 51:5 (2010), 1086–1101
  21. B. Simon, “On the absorption of eigenvalues by continuous spectrum in regular perturbation problems”, J. Functional Analys, 25:4 (1977), 338–344
  22. B. Simon, “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Physics, 97:2 (1976), 279–288
  23. S. A. Nazarov, “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C. R. Mecanique, 330:9 (2002), 603–607
  24. C. А. Назаров, “Равномерные оценки остатков в асимптотических разложениях решений задачи о собственных колебаниях пьезоэлектрической пластины”, Проблемы матем. анализа, 25, Тамара Рожковская, Новосибирск, 2003, 99–188
  25. W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:5 (1997), 1487–1495
  26. М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд-во Ленингр. ун-та, Л., 1980, 264 с.
  27. D. V. Evans, M. Levitin, D. Vassiliev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31
  28. D. S. Jones, “The eigenvalues of $nabla^2u+lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Cambridge Philos. Soc., 49:4 (1953), 668–684
  29. И. В. Камоцкий, С. А. Назаров, “Аномалии Вуда и поверхностные волны в задачах рассеяния на периодической границе. II”, Матем. сб., 190:2 (1999), 43–70
  30. С. А. Назаров, “Принудительная устойчивость простого собственного числа на непрерывном спектре волновода”, Функц. анализ и его прил., 47:3 (2013), 37–53
  31. М. И. Вишик, Л. А. Люстерник, “Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром”, УМН, 12:5(77) (1957), 3–122
  32. С. А. Назаров, “Бесконечная пластина Кирхгофа на компактном упругом основании может иметь сколь угодно малое собственное число”, Докл. РАН, 488:4 (2019), 362–366
  33. С. А. Назаров, “Волны, захваченные полубесконечной пластиной Кирхгофа на ультранизких частотах”, ПММ, 84:3 (2020), 327–340
  34. С. А. Назаров, “Построение захваченной волны на низких частотах в упругом волноводе”, Функц. анализ и его прил., 54:1 (2020), 41–57
  35. S. A. Nazarov, K. M. Ruotsalainen, “Criteria for trapped modes in a cranked channel with fixed and freely floating bodies”, Z. Angew. Math. Phys., 65:5 (2014), 977–1002
  36. А.-С. Боннэ-Бен Диа, С. А. Назаров, “Препятствия в акустическом волноводе, становящиеся “невидимыми” на заданных частотах”, Акустический журн., 59:6 (2013), 685–692
  37. Л. Берс, Ф. Джон, М. Шехтер, Уравнения с частными производными, Мир, М., 1966, 351 с.
  38. A. I. Korolkov, S. A. Nazarov, A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves”, Z. Angew. Math. Mech., 96:10 (2016), 1245–1260
  39. А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 4-е перераб. изд., Наука, М., 1976, 543 с.
  40. P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102
  41. P. Exner, S. A. Vugalter, “Bound states in a locally deformed waveguide: the critical case”, Lett. Math. Phys., 39:1 (1997), 59–68
  42. D. Borisov, P. Exner, R. Gadyl'shin, D. Krejčiřik, “Bound states in weakly deformed strips and layers”, Ann. Henri Poincare, 2:3 (2001), 553–572
  43. В. В. Грушин, “О собственных значениях финитно возмущенного оператора Лапласа в бесконечных цилиндрических областях”, Матем. заметки, 75:3 (2004), 360–371
  44. Р. Р. Гадыльшин, “О локальных возмущениях квантовых волноводов”, ТМФ, 145:3 (2005), 358–371
  45. Д. И. Борисов, “Дискретный спектр пары несимметричных волноводов, соединенных окном”, Матем. сб., 197:4 (2006), 3–32
  46. D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278
  47. М. Ван Дайк, Методы возмущений в механике жидкостей, Мир, М., 1967, 310 с.
  48. А. М. Ильин, Согласование асимптотических разложений решений краевых задач, Наука, М., 1989, 336 с.
  49. V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, Oper. Theory Adv. Appl., 111, Birkhäuser Verlag, Basel, 2000, xxiv+435 pp.
  50. V. A. Kozlov, V. G. Maz'ya, A. B. Movchan, Asymptotic analysis of fields in multi-structures, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1999, xvi+282 pp.
  51. В. А. Кондратьев, “Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками”, Тр. ММО, 16, Изд-во Моск. ун-та, М., 1967, 209–292
  52. C. А. Назаров, Ю. А. Ромашев, “Изменение коэффициента интенсивности при разрушении перемычки между двумя коллинеарными трещинами”, Изв. АН АрмССР. Механика, 35:4 (1982), 30–40
  53. C. А. Назаров, “Асимптотические условия в точках, самосопряженные расширения операторов и метод сращиваемых асимптотических разложений”, Тр. С.-Петербург. матем. о-ва, 5, Изд-во С.-Петербург. ун-та, СПб., 1998, 112–183
  54. Р. Миттра, С. Ли, Аналитические методы теории волноводов, Мир, М., 1974, 328 с.
  55. C. H. Wilcox, Scattering theory for diffraction gratings, Appl. Math. Sci., 46, Springer-Verlag, New-York, 1984, ix+163 pp.
  56. V. Kozlov, “On the Hadamard formula for nonsmooth domains”, J. Differential Equations, 230:2 (2006), 532–555
  57. V. Kozlov, “Domain dependence of eigenvalues of elliptic type operators”, Math. Ann., 357:4 (2013), 1509–1539
  58. G. Cardone, T. Durante, S. A. Nazarov, “Water-waves modes trapped in a canal by a near-surface rough body”, ZAMM Z. Angew. Math. Mech., 90:12 (2010), 983–1004
  59. G. Cardone, T. Durante, S. A. Nazarov, “Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation”, J. Math. Pures Appl. (9), 112 (2018), 1–40
  60. С. А. Назаров, “Волновод с двойным пороговым резонансом на простом пороге”, Матем. сб., 211:8 (2020), 20–67

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Nazarov S.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».