Simple closed geodesics on regular tetrahedra in spherical space

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that there are finitely many simple closed geodesics on regular tetrahedra in spherical space. Also, for any pair of coprime positive integers $(p,q)$, we find constants $\alpha_1$ and $\alpha_2$ depending on $p$ and $q$ and satisfying the inequality $\pi/3<\alpha_1<\alpha_2<2\pi/3$, such that a regular spherical tetrahedron with planar angle $\alpha\in(\pi/3, \alpha_1)$ has a unique simple closed geodesic of type $(p,q)$, up to tetrahedron isometry, whilst a regular spherical tetrahedron with planar angle $\alpha\in(\alpha_2, 2\pi/3)$ has no such geodesic.Bibliography: 19 titles.

About the authors

Alexander Andreevich Borisenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Email: aborisenk@gmail.com
Doctor of physico-mathematical sciences, Professor

Darya Dmitrievna Sukhorebska

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Email: sukhorebska@ilt.kharkov.ua
without scientific degree, no status

References

  1. L. Lusternik, L. Schnirelmann, “Sur le problème de troix geodesique fermees sur les surfaces de genre 0”, C. R. Acad. Sci. Paris, 189 (1929), 269–271
  2. J. Hadamard, “Les surfaces à courbures opposees et leurs lignes geodesiques”, J. Math. Pures Appl. (5), 4 (1898), 27–73
  3. H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen”, Math. Ann., 138 (1959), 1–26
  4. H. Huber, “Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II”, Math. Ann., 143 (1961), 463–464
  5. I. Rivin, “Simple curves on surfaces”, Geom. Dedicata, 87:1-3 (2001), 345–360
  6. M. Mirzakhani, “Growth of the number of simple closed geodesics on hyperbolic surfaces”, Ann. of Math. (2), 168:1 (2008), 97–125
  7. С. Э. Кон-Фоссен, Некоторые вопросы дифференциальной геометрии в целом, Физматгиз, М., 1959, 303 с.
  8. А. Д. Александров, Выпуклые многогранники, М.–Л., ГИТТЛ, 1950, 428 с.
  9. А. В. Погорелов, Внешняя геометрия выпуклых поверхностей, Наука, М., 1969, 759 с.
  10. А. В. Погорелов, “Одна теорема о геодезических на замкнутой выпуклой поверхности”, Матем. сб., 18(60):1 (1946), 181–183
  11. В. А. Топоногов, “Оценка длины выпуклой кривой на двумерной поверхности”, Сиб. матем. журн., 4:5 (1963), 1189–1193
  12. В. А. Вайгант, О. Ю. Матукевич, “Оценка длины простой геодезической на выпуклой поверхности”, Сиб. матем. журн., 42:5 (2001), 998–1011
  13. A. Cotton, D. Freeman, A. Gnepp, Ting Ng, J. Spivack, C. Yoder, “The isoperimetric problem on some singular surfaces”, J. Aust. Math. Soc., 78:2 (2005), 167–197
  14. K. A. Lawson, J. L. Parish, C. M. Traub, A. G. Weyhaupt, “Coloring graphs to classify simple closed geodesics on convex deltahedra”, Int. J. Pure Appl. Math., 89:2 (2013), 123–139
  15. D. Fuchs, E. Fuchs, “Closed geodesics on regular polyhedra”, Mosc. Math. J., 7:2 (2007), 265–279
  16. D. B. Fuchs, Geodesics on a regular dodecahedron, Preprint No. 91, Max Planck Inst. Math., Bonn, 2009, 14 pp.
  17. В. Ю. Протасов, “Замкнутые геодезические на поверхности симплекса”, Матем. сб., 198:2 (2007), 103–120
  18. А. А. Борисенко, Д. Д. Сухоребская, “Простые замкнутые геодезические на правильных тетраэдрах в пространстве Лобачевского”, Матем. сб., 211:5 (2020), 3–30
  19. A. A. Borisenko, “An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces”, Журн. матем. физ., анал., геом., 16:3 (2020), 221–227

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Borisenko A.A., Sukhorebska D.D.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».