Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition
- Авторлар: Borisov D.I.1,2,3, Mukhametrakhimova A.I.4
-
Мекемелер:
- Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Bashkir State University
- University of Hradec Králové
- Bashkir State Pedagogical University n. a. M. Akmulla
- Шығарылым: Том 212, № 8 (2021)
- Беттер: 33-88
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133394
- DOI: https://doi.org/10.4213/sm9435
- ID: 133394
Дәйексөз келтіру
Аннотация
Авторлар туралы
Denis Borisov
Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Bashkir State University; University of Hradec Králové
Email: borisovdi@yandex.ru
Doctor of physico-mathematical sciences, no status
Albina Mukhametrakhimova
Bashkir State Pedagogical University n. a. M. Akmulla
Әдебиет тізімі
- А. Г. Беляев, “Усреднение смешанной краевой задачи для уравнения Пуассона в области, перфорированной вдоль границы”, в ст.: “Совместные заседания семинара имени И. Г. Петровского по дифференциальным уравнениям и математическим проблемам физики и Московского математического общества (тринадцатая сессия, 2–5 февраля 1990 г.)”, УМН, 45:4(274) (1990), 123
- G. A. Chechkin, Yu. O. Koroleva, A. Meidell, L.-E. Persson, “On the Friedrichs inequality in a domain perforated aperiodically along the boundary. Homogenization procedure. Asymptotics for parabolic problems”, Russ. J. Math. Phys., 16:1 (2009), 1–16
- G. A. Chechkin, T. A. Chechkina, C. D'Apice, U. De Maio, “Homogenization in domains randomly perforated along the boundary”, Discrete Contin. Dyn. Syst. Ser. B, 12:4 (2009), 713–730
- M. Lobo, O. A. Oleinik, M. E. Perez, T. A. Shaposhnikova, “On homogenization of solutions of boundary value problems in domains, perforated along manifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3-4 (1997), 611–629
- М. Лобо, М. Е. Перес, В. В. Сухарев, Т. А. Шапошникова, “Об усреднении краевой задачи в области, перфорированной вдоль $(N-1)$-мерного многообразия с нелинейным краевым условием третьего типа на границе полостей”, Докл. РАН, 436:2 (2011), 163–167
- D. Gomez, E. Perez, T. A. Shaposhnikova, “On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems”, Asymptot. Anal., 80:3-4 (2012), 289–322
- D. Gomez, M. Lobo, M. E. Perez, T. A. Shaposhnikova, “Averaging of variational inequalities for the Laplacian with nonlinear restrictions along manifolds”, Appl. Anal., 92:2 (2013), 218–237
- Y. Amirat, O. Bodard, G. A. Chechkin, A. L. Piatnitski, “Asymptotics of a spectral-sieve problem”, J. Math. Anal. Appl., 435:2 (2016), 1652–1671
- Р. Р. Гадыльшин, А. Л. Пятницкий, Г. А. Чечкин, “Об асимптотиках собственных значений краевой задачи в плоской области типа сита Стеклова”, Изв. РАН. Сер. матем., 82:6 (2018), 37–64
- G. A. Chechkin, R. R. Gadyl'shin, C. D'Apice, U. De Maio, “On the Steklov problem in a domain perforated along a part of the boundary”, ESAIM Math. Model. Numer. Anal., 51:4 (2017), 1317–1342
- J. I. Diaz, D. Gomez-Castro, T. A. Shaposhnikova, M. N. Zubova, “Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles”, Appl. Anal., 98:1-2 (2019), 232–255
- М. Ш. Бирман, “О процедуре усреднения для периодических операторов в окрестности края внутренней лакуны”, Алгебра и анализ, 15:4 (2003), 67–71
- М. Ш. Бирман, Т. А. Суслина, “Периодические дифференциальные операторы второго порядка. Пороговые свойства и усреднения”, Алгебра и анализ, 15:5 (2003), 1–108
- В. В. Жиков, “Об операторных оценках в теории усреднения”, Докл. РАН, 403:3 (2005), 305–308
- С. Е. Пастухова, “Операторные оценки в нелинейных задачах повторного усреднения”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 261, МАИК “Наука/Интерпериодика”, М., 2008, 220–233
- D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A., 42:36 (2009), 365205, 21 pp.
- D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. Henri Poincare, 11:8 (2010), 1591–1627
- D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with an infinite number of small windows”, C. R. Math. Acad. Sci. Paris, 349:1-2 (2011), 53–56
- Д. Борисов, Р. Бюнуау, Дж. Кардоне, “Усреднение и асимптотики для волновода с бесконечным числом близко расположенных малых окон”, Проблемы матем. анализа, 58, Тамара Рожковская, Новосибирск, 2011, 59–68
- D. Borisov, R. Bunoiu, G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys., 64:3 (2013), 439–472
- D. Borisov, G. Cardone, L. Faella, C. Perugia, “Uniform resolvent convergence for strip with fast oscillating boundary”, J. Differential Equations, 255:12 (2013), 4378–4402
- Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий в случае усредненного условия Дирихле”, Матем. сб., 205:10 (2014), 125–160
- Д. И. Борисов, Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий в случае третьего усредненного условия”, Проблемы матем. анализа, 83, Тамара Рожковская, Новосибирск, 2015, 3–40
- D. Borisov, G. Cardone, T. Durante, “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Roy. Soc. Edinburgh Sect. A, 146:6 (2016), 1115–1158
- А. М. Ильин, Согласование асимптотических разложений решений краевых задач, Наука, М., 1989, 336 с.
- J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian”, Problems in analysis, In honor of S. Bochner, 1969, Princeton Univ. Press, Princeton, NJ, 1970, 195–199
- I. Chavel, Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Math., 145, Cambridge Univ. Press, Cambridge, 2001, xii+268 pp.
- Ж.-Л. Лионс, Некоторые методы решения нелинейных краевых задач, Мир, М., 1972, 587 с.
- Д. И. Борисов, “Дискретный спектр пары несимметричных волноводов, соединенных окном”, Матем. сб., 197:4 (2006), 3–32
- D. Borisov, P. Exner, R. Gadyl'shin, “Geometric coupling thresholds in a two-dimensional strip”, J. Math. Phys., 43:12 (2002), 6265–6278
- О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, 2-е изд., Наука, М., 1973, 576 с.
- Д. И. Борисов, А. И. Мухаметрахимова, “О равномерной резольвентной сходимости для эллиптических операторов в многомерных областях с малыми отверстиями”, Проблемы матем. анализа, 92, Тамара Рожковская, Новосибирск, 2018, 69–81
Қосымша файлдар
