On the fixed volume discrepancy of the Korobov point sets
- Authors: Rubtsova A.S.1,2, Ryutin K.S.1,2, Temlyakov V.N.3,4,1,2
-
Affiliations:
- Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University
- Moscow Center for Fundamental and Applied Mathematics
- University of South Carolina
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 212, No 8 (2021)
- Pages: 151-164
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133396
- DOI: https://doi.org/10.4213/sm9420
- ID: 133396
Cite item
Abstract
Keywords
About the authors
Anastasiya Sergeevna Rubtsova
Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Konstantin Sergeevich Ryutin
Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Email: kriutin@yahoo.com
Candidate of physico-mathematical sciences
Vladimir Nikolaevich Temlyakov
University of South Carolina; Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Email: temlyak@math.sc.edu
Doctor of physico-mathematical sciences, Professor
References
- V. N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, J. Complexity, 61 (2020), 101472, 8 pp.
- J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp.
- J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp.
- E. Novak, H. Wozniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc., Zürich, 2010, xviii+657 pp.
- V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
- D. Bilyk, “Roth's orthogonal function method in discrepancy theory and some new connections”, A panorama of discrepancy theory, Lecture Notes in Math., 2107, Springer, Cham, 2014, 71–158
- Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
- V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391
- V. Temlyakov, “Connections between numerical integration, discrepancy, dispersion, and universal discretization”, SMAI J. Comput. Math., S5 (2019), 185–209
- V. N. Temlyakov, “Smooth fixed volume discrepancy, dispersion, and related problems”, J. Approx. Theory, 237 (2019), 113–134
- C. Aistleitner, A. Hinrichs, D. Rudolf, “On the size of the largest empty box amidst a point set”, Discrete Appl. Math., 230 (2017), 146–150
- S. Breneis, A. Hinrichs, Fibonacci lattices have minimal dispersion on the two-dimensional torus
- A. Dumitrescu, Minghui Jiang, “On the largest empty axis-parallel box amidst $n$ points”, Algorithmica, 66:2 (2013), 225–248
- G. Rote, R. F. Tichy, “Quasi-Monte-Carlo methods and the dispersion of point sequences”, Math. Comput. Modelling, 23:8-9 (1996), 9–23
- D. Rudolf, “An upper bound of the minimal dispersion via delta covers”, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan, Springer, Cham, 2018, 1099–1108
- J. Sosnovec, “A note on minimal dispersion of point sets in the unit cube”, European J. Combin., 69 (2018), 255–259
- M. Ullrich, “A lower bound for the dispersion on the torus”, Math. Comput. Simulation, 143 (2018), 186–190
- M. Ullrich, “A note on the dispersion of admissible lattices”, Discrete Appl. Math., 257 (2019), 385–387
- M. Ullrich, J. Vybiral, “An upper bound on the minimal dispersion”, J. Complexity, 45 (2018), 120–126
- V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp.
- V. N. Temlyakov, “Fixed volume discrepancy in the periodic case”, Topics in classical and modern analysis (Savannah, GA, 2017), Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 315–330
- H. Niederreiter, Chaoping Xing, “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273
- В. А. Быковский, “Отклонение сеток Коробова”, Изв. РАН. Сер. матем., 76:3 (2012), 19–38
Supplementary files
