On the fixed volume discrepancy of the Korobov point sets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper is devoted to the study of a discrepancy-type characteristic – the fixed volume discrepancy – of Korobov point sets in the unit cube. It has been observed recently that this new characteristic allows us to obtain an optimal rate of dispersion decay. This observation has motivated us to study this new version of discrepancy thoroughly; it also seems to have independent interest. This paper extends recent results due to Temlyakov and Ullrich on the fixed volume discrepancy of Fibonacci point sets. Bibliography: 23 titles.

About the authors

Anastasiya Sergeevna Rubtsova

Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Konstantin Sergeevich Ryutin

Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: kriutin@yahoo.com
Candidate of physico-mathematical sciences

Vladimir Nikolaevich Temlyakov

University of South Carolina; Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: temlyak@math.sc.edu
Doctor of physico-mathematical sciences, Professor

References

  1. V. N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, J. Complexity, 61 (2020), 101472, 8 pp.
  2. J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp.
  3. J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp.
  4. E. Novak, H. Wozniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc., Zürich, 2010, xviii+657 pp.
  5. V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
  6. D. Bilyk, “Roth's orthogonal function method in discrepancy theory and some new connections”, A panorama of discrepancy theory, Lecture Notes in Math., 2107, Springer, Cham, 2014, 71–158
  7. Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
  8. V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391
  9. V. Temlyakov, “Connections between numerical integration, discrepancy, dispersion, and universal discretization”, SMAI J. Comput. Math., S5 (2019), 185–209
  10. V. N. Temlyakov, “Smooth fixed volume discrepancy, dispersion, and related problems”, J. Approx. Theory, 237 (2019), 113–134
  11. C. Aistleitner, A. Hinrichs, D. Rudolf, “On the size of the largest empty box amidst a point set”, Discrete Appl. Math., 230 (2017), 146–150
  12. S. Breneis, A. Hinrichs, Fibonacci lattices have minimal dispersion on the two-dimensional torus
  13. A. Dumitrescu, Minghui Jiang, “On the largest empty axis-parallel box amidst $n$ points”, Algorithmica, 66:2 (2013), 225–248
  14. G. Rote, R. F. Tichy, “Quasi-Monte-Carlo methods and the dispersion of point sequences”, Math. Comput. Modelling, 23:8-9 (1996), 9–23
  15. D. Rudolf, “An upper bound of the minimal dispersion via delta covers”, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan, Springer, Cham, 2018, 1099–1108
  16. J. Sosnovec, “A note on minimal dispersion of point sets in the unit cube”, European J. Combin., 69 (2018), 255–259
  17. M. Ullrich, “A lower bound for the dispersion on the torus”, Math. Comput. Simulation, 143 (2018), 186–190
  18. M. Ullrich, “A note on the dispersion of admissible lattices”, Discrete Appl. Math., 257 (2019), 385–387
  19. M. Ullrich, J. Vybiral, “An upper bound on the minimal dispersion”, J. Complexity, 45 (2018), 120–126
  20. V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp.
  21. V. N. Temlyakov, “Fixed volume discrepancy in the periodic case”, Topics in classical and modern analysis (Savannah, GA, 2017), Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 315–330
  22. H. Niederreiter, Chaoping Xing, “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273
  23. В. А. Быковский, “Отклонение сеток Коробова”, Изв. РАН. Сер. матем., 76:3 (2012), 19–38

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Rubtsova A.S., Ryutin K.S., Temlyakov V.N.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».