Strong convexity of reachable sets of linear systems
- Authors: Balashov M.V.1
-
Affiliations:
- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
- Issue: Vol 213, No 5 (2022)
- Pages: 30-49
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133442
- DOI: https://doi.org/10.4213/sm9627
- ID: 133442
Cite item
Abstract
About the authors
Maxim Viktorovich Balashov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Email: balashov73@mail.ru
Doctor of physico-mathematical sciences, Associate professor
References
- Э. Б. Ли, Л. Маркус, Основы теории оптимального управления, Наука, М., 1972, 574 с.
- M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and fault-tolerant control, Springer, Berlin, 2003, xvii+571 pp.
- A. Chutinan, B. H. Krogh, “Computational techniques for hybrid system verification”, IEEE Trans. Automat. Control, 48:1 (2003), 64–75
- A. B. Singer, P. I. Barton, “Global optimization with nonlinear ordinary differential equations”, J. Global Optim., 34:2 (2006), 159–190
- R. J. Aumann, “Integrals of set-valued functions”, J. Math. Anal. Appl., 12:1 (1965), 1–12
- А. А. Ляпунов, “О вполне аддитивных вектор-функциях”, Изв. АН СССР. Сер. матем., 4:6 (1940), 465–478
- Л. С. Понтрягин, “Линейные дифференциальные игры преследования”, Матем. сб., 112(154):3(7) (1980), 307–330
- Н. Н. Красовский, Теория управления движением. Линейные системы, Наука, М., 1968, 475 с.
- A. B. Kurzhanski, P. Varaiya, “On verification of controlled hybrid dynamics through ellipsoidal techniques”, Proceedings of the 44th IEEE conference on decision and control (Seville, 2005), IEEE, 2005, 4682–4687
- Inseok Hwang, D. M. Stipanovic, C. J. Tomlin, “Polytopic approximations of reachable sets applied to linear dynamic games and a class of nonlinear systems”, Advances in control, communication networks, and transportation systems, Systems Control Found. Appl., Birkhäuser Boston, Boston, MA, 2005, 3–19
- Г. Е. Иванов, Е. С. Половинкин, “О сильно выпуклых линейных дифференциальных играх”, Дифференц. уравнения, 31:10 (1995), 1641–1648
- М. В. Балашов, “О многогранных аппроксимациях в $n$-мерном пространстве”, Ж. вычисл. матем. и матем. физ., 56:10 (2016), 1695–1701
- J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259
- Е. С. Половинкин, “Сильно выпуклый анализ”, Матем. сб., 187:2 (1996), 103–130
- Е. С. Половинкин, М. В. Балашов, Элементы выпуклого и сильно выпуклого анализа, 2-е изд., Физматлит, М., 2007, 438 с.
- A. Weber, G. Reissig, “Local characterization of strongly convex sets”, J. Math. Anal. Appl., 400:2 (2013), 743–750
- A. Weber, G. Reissig, “Classical and strong convexity of sublevel sets and application to attainable sets of nonlinear systems”, SIAM J. Control Optim., 52:5 (2014), 2857–2876
- H. Frankowska, C. Olech, “$R$-convexity of the integral of set-valued functions”, Contributions to analysis and geometry (Baltimore, MD, 1980), Johns Hopkins Univ. Press, Baltimore, MD, 1981, 117–129
- M. V. Balashov, “Lipschitz stability of extremal problems with a strongly convex set”, J. Convex Anal., 27:1 (2020), 103–116
- Е. С. Половинкин, Многозначный анализ и дифференциальные включения, Физматлит, М., 2015, 524 с.
- Р. Рокафеллар, Выпуклый анализ, Мир, М., 1973, 472 с.
- M. V. Balashov, “Chebyshev center and inscribed balls: properties and calculations”, Optim. Lett., 2021, 1–14, Publ. online
- V. V. Goncharov, G. E. Ivanov, “Strong and weak convexity of closed sets in a Hilbert space”, Operations research, engineering, and cyber security, Springer Optim. Appl., 113, Springer, Cham, 2017, 259–297
Supplementary files
