Асимптотики сферы и фронта плоской субримановой структуры на распределении Мартине

Обложка
  • Авторы: Богаевский И.А.1,2,3
  • Учреждения:
    1. Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
    2. Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук
    3. Институт программных систем им. А. К. Айламазяна РАН
  • Выпуск: Том 213, № 5 (2022)
  • Страницы: 50-67
  • Раздел: Статьи
  • URL: https://journal-vniispk.ru/0368-8666/article/view/133443
  • DOI: https://doi.org/10.4213/sm9560
  • ID: 133443

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сфера и фронт плоской субримановой структуры на распределении Мартине представляют собой поверхности с неизолированными особенностями, лежащие в трехмерном пространстве. Сфера является подмножеством фронта и не субаналитична в двух симметричных друг другу точках (полюсах). В них вычислены асимптотики субримановой сферы и фронта Мартине – каждая из этих поверхностей в окрестности полюса приближается парой квазиоднородных с различными наборами весов.Библиография: 13 названий.

Об авторах

Илья Александрович Богаевский

Московский государственный университет имени М. В. Ломоносова, механико-математический факультет; Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук; Институт программных систем им. А. К. Айламазяна РАН

Email: bogaevsk@mccme.ru
доктор физико-математических наук, без звания

Список литературы

  1. A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448
  2. M. Gromov, “Carnot–Caratheodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323
  3. А. А. Аграчев, “Некоторые вопросы субримановой геометрии”, УМН, 71:6(432) (2016), 3–36
  4. B. Bonnard, M. Chyba, E. Trelat, “Sub-Riemannian geometry: one-parameter deformation of the Martinet flat case”, J. Dynam. Control Systems, 4:1 (1998), 59–76
  5. E. Trelat, “Non-subanalyticity of sub-Riemannian Martinet spheres”, C. R. Acad. Sci. Paris Ser. I Math., 332:6 (2001), 527–532
  6. Б. Боннар, Г. Лоне, Е. Трела, “Трансцендентность, необходимая для вычисления сферы и волнового фронта в субримановой геометрии Мартине”, Труды международной конференции, посвященной 90-летию со дня рождения Л. С. Понтрягина (Москва, 1998), т. 3, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 64, Геометрическая теория управления, ВИНИТИ, М., 1999, 82–117
  7. А. А. Ардентов, Ю. Л. Сачков, “Экстремальные траектории в нильпотентной субримановой задаче на группе Энгеля”, Матем. сб., 202:11 (2011), 31–54
  8. Ю. Л. Сачков, “Экспоненциальное отображение в обобщенной задаче Дидоны”, Матем. сб., 194:9 (2003), 63–90
  9. А. М. Вершик, В. Я. Гершкович, “Неголономные динамические системы. Геометрия распределений и вариационные задачи”, Динамические системы – 7, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 16, ВИНИТИ, М., 1987, 5–85
  10. A. A. Agrachev, “Exponential mappings for contact sub-Riemannian structures”, J. Dynam. Control Systems, 2:3 (1996), 321–358
  11. I. Bogaevsky, “Fronts of control-affine systems in $mathbb{R}^3$”, J. Singul., 21 (2020), 15–29
  12. Г. Бэйтмен, А. Эрдейи, Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, Наука, М., 1967, 299 с.
  13. А. М. Журавский, Справочник по эллиптическим функциям, Изд-во АН СССР, М.–Л., 1941, 235 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Богаевский И.А., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».