О поведении сумм Биркгофа, порожденных поворотами окружности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе рассмотрены суммы Биркгофа $f(n,x,h)$ для непрерывных функций $f$ с нулевым средним на окружности, порожденные поворотами на углы $2\pi h$, где число $h$ иррациональное. Основной результат утверждает, что единственным ограничением на скорость роста последовательности $\max_x f(n,x,h) $ при $n \to \infty$ является равномерное стремление к нулю средних Биркгофа $\frac{1}{n}f(n,x,h)$. А именно показано, что для любой последовательности $\sigma_k \to 0$ и для любого иррационального $h$ существует такая функция $f$, что последовательность $\max_x f(n,x,h) $ растет быстрее, чем $n\sigma_n$, а также что для любой функции $f$, не являющейся тригонометрическим многочленом, существуют иррациональные $h$, при которых некоторая подпоследовательность $\max_x f(n_k,x,h)$ растет быстрее, чем соответствующая подпоследовательность $n_k\sigma_{n_k}$.Даны приложения к исследованию операторов взвешенного сдвига, порожденных иррациональными поворотами, и их резольвент; показано, что резольвента такого оператора может возрастать сколь угодно быстро при приближении к спектру.Библиография: 46 названий.

Об авторах

Анатолий Борисович Антоневич

Белорусский государственный университет

Email: antonevich@bsu.by
доктор физико-математических наук, профессор

Андрей Васильевич Кочергин

Московский государственный университет имени М. В. Ломоносова, экономический факультет

Email: a.kochergin@gmail.com
доктор физико-математических наук, профессор

Али Абдулхусеен Шукур

University of Kufa; Белорусский государственный университет

Email: shukur.math@gmail.com
кандидат физико-математических наук, доцент

Список литературы

  1. И. П. Корнфельд, Я. Г. Синай, С. В. Фомин, Эргодическая теория, Наука, М., 1980, 384 с.
  2. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  3. А. Пуанкаре, О кривых, определяемых дифференциальными уравнениями, ГИТТЛ, М.–Л., 1947, 392 с.
  4. H. Poincare, “Sur les series trigonometriques”, C. R. Acad. Sci. Paris, 101 (1886), 1131–1134
  5. В. В. Козлов, Методы качественного анализа в динамике твердого тела, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2000, 248 с.
  6. В. В. Козлов, “Об одной задаче Пуанкаре”, ПММ, 40:2 (1976), 352–355
  7. А. Б. Крыгин, “Об $omega$-предельных множествах гладких цилиндрических каскадов”, Матем. заметки, 23:6 (1978), 873–884
  8. Е. А. Сидоров, “Об условиях равномерной устойчивости по Пуассону цилиндрических систем”, УМН, 34:6(210) (1979), 184–188
  9. Н. Г. Мощевитин, “Распределение значений линейных функций и асимптотическое поведение траекторий некоторых динамических систем”, Матем. заметки, 58:3 (1995), 394–410
  10. Д. В. Аносов, “Об аддитивном функциональном гомологическом уравнении, связанном с эргодическим поворотом окружности”, Изв. АН СССР. Сер. матем., 37:6 (1973), 1259–1274
  11. В. И. Арнольд, “Малые знаменатели и проблемы устойчивости движения в классической и небесной механике”, УМН, 18:6(114) (1963), 91–192
  12. А. Я. Гордон, “Достаточное условие неразрешимости аддитивного функционального гомологического уравнения, связанного с эргодическим поворотом окружности”, Функц. анализ и его прил., 9:4 (1975), 71–72
  13. А. А. Гура, “Гомологические уравнения и топологические свойства $S^1$-расширений над эргодическим поворотом окружности”, Матем. заметки, 23:3 (1978), 463–470
  14. А. В. Рождественский, “Об аддитивном когомологическом уравнении и типичном поведении сумм Биркгофа над сдвигом многомерного тора”, Динамические системы и оптимизация, Сборник статей. К 70-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 256, Наука, МАИК «Наука/Интерпериодика», М., 2007, 278–289
  15. Е. А. Сидоров, “Топологически транзитивные цилиндрические каскады”, Матем. заметки, 14:3 (1973), 441–452
  16. А. Н. Колмогоров, “О динамических системах с интегральным инвариантом на торе”, Докл. АН СССР, 93:5 (1953), 763–766
  17. Л. Г. Шнирельман, “Пример одного преобразования плоскости”, Изв. Донского политехн. ин-та, 14 (1930), 64–74
  18. A. S. Besicovitch, “A problem on topological transformation of the plane”, Fund. Math., 28 (1937), 61–65
  19. W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp.
  20. A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47 (1951), 38–45
  21. E. Dymek, Transitive cylinder flows whose set of discrete points is of full Hausdorff dimension
  22. А. В. Кочергин, “Новые примеры транзитивных цилиндрических каскадов со свойством Безиковича”, Матем. сб., 209:9 (2018), 3–18
  23. А. Я. Хинчин, Цепные дроби, 4-е изд., Наука, М., 1978, 112 с.
  24. А. В. Кочергин, “Об отсутствии перемешивания у специальных потоков над поворотом окружности и потоков на двумерном торе”, Докл. АН СССР, 205:3 (1972), 515–518
  25. А. В. Кочергин, “Перемешивающий специальный поток над поворотом окружности с почти липшицевой функцией”, Матем. сб., 193:3 (2002), 51–78
  26. А. В. Кочергин, “Замена времени в потоках и перемешивание”, Изв. АН СССР. Сер. матем., 37:6 (1973), 1275–1298
  27. A. B. Antonevich, A. A. Shukur, “On the powers of operator generated by rotation”, J. Anal. Appl., 16:1 (2018), 57–67
  28. И. У. Бронштейн, Неавтономные динамические системы, Штиинца, Кишинев, 1984, 292 с.
  29. А. Б. Антоневич, Линейные функциональные уравнения. Операторный подход, Изд-во «Университетское», Минск, 1988, 232 с.
  30. A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific & Technical, Harlow, 1994, viii+504 pp.
  31. А. Б. Антоневич, А. А. Шукур, “Оценки норм степеней оператора, порожденного иррациональным поворотом”, Докл. НАН Беларуси, 61:1 (2017), 30–35
  32. А. А. Шукур, “Поведение норм степеней оператора, порожденного рациональным поворотом”, Вестник БГУ. Сер. 1, 2016, № 2, 110–115
  33. N. Karapetiants, S. Samko, Equations with involutive operators, Birkhäuser Boston, Inc., Boston, MA, 2001, xxiv+427 pp.
  34. Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
  35. А. Б. Антоневич, “Об изменениях спектра при малых возмущениях оператора”, Вестник БГУ. Сер. 1, 1976, № 3, 60–61
  36. I. Gelfand, “Zur Theorie der Charaktere der Abelschen topologischen Gruppen”, Матем. сб., 9(51):1 (1941), 49–50
  37. Г. Е. Шилов, “Об одной теореме И. М. Гельфанда и ее обобщениях”, Докл. АН СССР, 72 (1950), 641–644
  38. Yu. Lyubich, “Spectral localization, power boundedness and invariant subspaces under Ritt's type condition”, Studia Math., 134:2 (1999), 153–167
  39. А. М. Гомилко, Я. Земанек, “О равномерном резольвентном условии Крейсса”, Функц. анализ и его прил., 42:3 (2008), 81–84
  40. O. Nevanlinna, “Resolvent conditions and powers of operators”, Studia Math., 145:2 (2001), 113–134
  41. A. Gomilko, J. Zemanek, “On the strong Kreiss resolvent condition”, Complex Anal. Oper. Theory, 7:2 (2013), 421–435
  42. Е. М. Дынькин, “Операторное исчисление, основанное на формуле Коши–Грина”, Исследования по линейным операторам и теории функций. III, Зап. науч. сем. ЛОМИ, 30, Изд-во “Наука”, Ленинград. отд., Л., 1972, 33–39
  43. Г. Г. Магарил-Ильяев, В. М. Тихомиров, Выпуклый анализ и его приложения, 2-е изд., Эдиториал УРСС, М., 2000, 176 с.
  44. А. Б. Антоневич, А. А. Шукур, “Об операторах с экспоненциальным ростом резольвенты”, ТВИМ, 2016, № 3(32), 9–20
  45. Б. Я. Левин, Распределение корней целых функций, Гостехиздат, М., 1956, 632 с.
  46. С. Р. Треиль, “Резольвента оператора Тeплица может расти сколь угодно быстро”, Исследования по линейным операторам и теории функций. XVI, Зап. науч. сем. ЛОМИ, 157, Изд-во “Наука”, Ленинград. отд., Л., 1987, 175–177

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Антоневич А.Б., Кочергин А.В., Шукур А.А., 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».