Integrable billiards on a Minkowski hyperboloid: extremal polynomials and topology
- 作者: Dragović V.I.1,2, Gasiorek S.3, Radnović M.3,2
-
隶属关系:
- Department of Mathematical Sciences, The University of Texas at Dallas
- Mathematical Institute, Serbian Academy of Sciences and Arts
- School of Mathematics and Statistics, The University of Sydney
- 期: 卷 213, 编号 9 (2022)
- 页面: 34-69
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133464
- DOI: https://doi.org/10.4213/sm9662
- ID: 133464
如何引用文章
详细
作者简介
Vladimir Dragović
Department of Mathematical Sciences, The University of Texas at Dallas; Mathematical Institute, Serbian Academy of Sciences and Arts
Sean Gasiorek
School of Mathematics and Statistics, The University of Sydney
Email: sean.gasiorek@sydney.edu.au
Milena Radnović
School of Mathematics and Statistics, The University of Sydney; Mathematical Institute, Serbian Academy of Sciences and Arts
Email: milena@mi.sanu.ac.rs
参考
- A. K. Adabrah, V. Dragovic, M. Radnovic, “Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials”, Regul. Chaotic Dyn., 24:5 (2019), 464–501
- N. Achyeser, “Über einige Funktionen, welche in zwei gegebenen Interwallen am wenigsten von Null abweichen. I Teil”, Изв. АН СССР. VII сер. Отд. матем. и естеств. наук, 1932, no. 9, 1163–1202
- Н. И. Ахиезер, Лекции по теории аппроксимации, Гостехиздат, М.–Л., 1947, 323 с.
- Н. И. Ахиезер, Элементы теории эллиптических функций, 2-е изд., Наука, М., 1970, 304 с.
- R. J. Baxter, “Eight-vertex model in lattice statistics”, Phys. Rev. Lett., 26:14 (1971), 832–833
- R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Phys. Rev. Lett., 26:14 (1971), 834–834
- R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Ann. Physics, 70:2 (1972), 323–337
- R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228
- Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, М., 1985, 488 с.
- А. В. Болсинов, А. В. Борисов, И. С. Мамаев, “Топология и устойчивость интегрируемых систем”, УМН, 65:2(392) (2010), 71–132
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- А. В. Болсинов, С. В. Матвеев, А. Т. Фоменко, “Топологическая классификация интегрируемых гамильтоновых систем с двумя степенями свободы. Список систем малой сложности”, УМН, 45:2(272) (1990), 49–77
- A. Cayley, “Developments on the porism of the in-and-circumscribed polygon”, Philos. Mag. (4), 7:46 (1854), 339–345
- A. Cayley, “On the porism of the in-and-circumscribed polygon”, Philos. Trans. Roy. Soc. London, 151 (1861), 225–239
- V. Dragovic, “Algebro-geometric approach to the Yang–Baxter equation and related topics”, Publ. Inst. Math. (Beograd) (N.S.), 91:105 (2012), 25–48
- V. I. Dragovic, “Geometrization and generalization of the Kowalevski top”, Comm. Math. Phys., 298:1 (2010), 37–64
- V. Dragovic, B. Jovanovic, M. Radnovic, “On elliptical billiards in the Lobachevsky space and associated geodesic hierarchies”, J. Geom. Phys., 47:2-3 (2003), 221–234
- V. Dragovic, M. Radnovic, “Conditions of Cayley's type for ellipsoidal billiard”, J. Math. Phys., 39:1 (1998), 355–362
- V. Dragovic, M. Radnovic, “On periodical trajectories of the billiard systems within an ellipsoid in $mathbf R^d$ and generalized Cayley's condition”, J. Math. Phys., 39:11 (1998), 5866–5869
- V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
- В. Драгович, М. Раднович, “Интегрируемые биллиарды и квадрики”, УМН, 65:2(392) (2010), 133–194
- В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
- V. Dragovic, M. Radnovic, “Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics”, Adv. Math., 231:3-4 (2012), 1173–1201
- V. Dragovic, M. Radnovic, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30
- В. Драгович, М. Раднович, “Топологические инварианты эллиптических биллиардов и геодезических потоков эллипсоидов в пространстве Минковского”, Фундамент. и прикл. матем., 20:2 (2015), 51–64
- V. Dragovic, M. Radnovic, “Caustics of Poncelet polygons and classical extremal polynomials”, Regul. Chaotic Dyn., 24:1 (2019), 1–35
- V. Dragovic, M. Radnovic, “Periodic ellipsoidal billiard trajectories and extremal polynomials”, Comm. Math. Phys., 372:1 (2019), 183–211
- V. Dragovic, V. Shramchenko, “Deformations of Zolotarev polynomials and Painleve VI equations”, Lett. Math. Phys., 111:3 (2021), 75, 28 pp.
- J. J. Duistermaat, Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monogr. Math., Springer, New York, 2010, xxii+627 pp.
- L. Euler, “Evolutio generalior formularum comparationi curvarum inservientium”, E347/1765, Novi Comment. Acad. Sci. Imp. Petropol., 12 (1768), 42–86
- A. Fomenko, I. Kharcheva, V. Kibkalo, Realization of integrable Hamiltonian systems by billiard books
- A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133
- В. В. Фокичева, “Классификация биллиардных движений в областях, ограниченных софокусными параболами”, Матем. сб., 205:8 (2014), 139–160
- A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
- A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
- P. Griffiths, J. Harris, “A Poncelet theorem in space”, Comment. Math. Helv., 52:1 (1977), 145–160
- S. Gasiorek, M. Radnovic, “Pseudo-Euclidean billiards within confocal curves on the hyperboloid of one sheet”, J. Geom. Phys., 161 (2021), 104032, 21 pp.
- M. G. Kreĭn, B. Ya. Levin, A. A. Nudel'man, “On special representations of polynomials that are positive on a system of closed intervals, and some applications”, Functional analysis, optimization, and mathematical economics, Oxford Univ. Press, New York, 1990, 56–114
- B. Khesin, S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396
- J. Moser, A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Comm. Math. Phys., 139:2 (1991), 217–243
- M. Pnueli, V. Rom-Kedar, “On the structure of Hamiltonian impact systems”, Nonlinearity, 34:4 (2021), 2611–2658
- M. Radnovic, “Topology of the elliptical billiard with the Hooke's potential”, Theoret. Appl. Mech. (Belgrade), 42:1 (2015), 1–9
- N. Trudi, “Rappresentazione geometrica immediata dell' equazione fondamentale della teoria delle funzioni ellitiche con diverse applicazioni”, Mem. R. Accad. Sci. Napoli, 1853, 63–99
- N. Trudi, “Studii intorno ad una singolare eliminazione, con applicazione alla ricerca delle relazione tra gli elementi di due coniche, l'una iscritta, l'altra circoscritta ad un poligono, ed ai corrispondenti teoremi di Poncelet”, Atti R. Accad. Sci. Fis. Mat. Napoli, 1 (1863), 6, 53 pp.
- В. В. Ведюшкина, “Инварианты Фоменко–Цишанга невыпуклых топологических биллиардов”, Матем. сб., 210:3 (2019), 17–74
- A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107
- А. П. Веселов, “О росте числа образов точки при итерациях многозначного отображения”, Матем. заметки, 49:2 (1991), 29–35
- A. P. Veselov, “Growth and integrability in the dynamics of mappings”, Comm. Math. Phys., 145:1 (1992), 181–193
- В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
- A. P. Veselov, L. H. Wu, “Geodesic scattering on hyperboloids and Knörrer's map”, Nonlinearity, 34:9 (2021), 5926–5954
- Е. И. Золотарев, “Приложение эллиптических функций к вопросам о функциях, наименее и наиболее уклоняющихся от нуля (1877)”, Полное собрание сочинений, т. II, Изд-во АН СССР, Л., 1932, 1–59
补充文件
