Realization of geodesic flows with a linear first integral by billiards with slipping
- Authors: Vedyushkina V.V.1, Zav'yalov V.N.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 213, No 12 (2022)
- Pages: 31-52
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133482
- DOI: https://doi.org/10.4213/sm9772
- ID: 133482
Cite item
Abstract
About the authors
Viktoriya Viktorovna Vedyushkina
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Email: arinir@yandex.ru
Doctor of physico-mathematical sciences
Vladimir Nikolaevich Zav'yalov
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- В. В. Козлов, “Топологические препятствия к интегрируемости натуральных механических систем”, Докл. АН СССР, 249:6 (1979), 1299–1302
- В. В. Козлов, Симметрии, топология и резонансы в гамильтоновой механике, Изд-во Удмуртского ун-та, Ижевск, 1995, 429 с.
- А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
- В. Н. Колокольцов, “Геодезические потоки на двумерных многообразиях с дополнительным полиномиальным по скоростям первым интегралом”, Изв. АН СССР. Сер. матем., 46:5 (1982), 994–1010
- И. К. Бабенко, Н. Н. Нехорошев, “О комплексных структурах на двумерных торах, допускающих метрики с нетривиальным квадратичным интегралом”, Матем. заметки, 58:5 (1995), 643–652
- А. Т. Фоменко, В. В. Ведюшкина, “Бильярды и интегрируемость в геометрии и физике. Новый взгляд и новые возможности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2019, № 3, 15–25
- A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville foliations of topological billiards with slipping”, Russ. J. Math. Phys., 28:1 (2021), 37–55
- В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
- В. В. Ведюшкина, А. Т. Фоменко, И. С. Харчева, “Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами”, Докл. РАН, 479:6 (2018), 607–610
- В. В. Фокичева (Ведюшкина), Топологическая классификация интегрируемых биллиардов, Дисс. … канд. физ.-матем. наук, МГУ, М., 2016, 130 с.
- С. Е. Пустовойтов, “Топологический анализ биллиарда, ограниченного софокусными квадриками, в потенциальном поле”, Матем. сб., 212:2 (2021), 81–105
- A. T. Fomenko, V. V. Vedyushkina, “Implementation of integrable systems by topological, geodesic billiards with potential and magnetic field”, Russ. J. Math. Phys., 26:3 (2019), 320–333
- Е. Е. Каргинова, “Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского”, Матем. сб., 211:1 (2020), 3–31
- В. В. Ведюшкина, А. И. Скворцов, “Топология интегрируемого бильярда в эллипсе на плоскости Минковского с гуковским потенциалом”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2022, № 1, 8–19
- Г. В. Белозеров, “Топологическая классификация интегрируемых геодезических биллиардов на квадриках в трeхмерном евклидовом пространстве”, Матем. сб., 211:11 (2020), 3–40
- Г. В. Белозеров, “Топологическая классификация биллиардов в трехмерном евклидовом пространстве, ограниченных софокусными квадриками”, Матем. сб., 213:2 (2022), 3–36
- В. В. Ведюшкина, И. С. Харчева, “Биллиардные книжки моделируют все трехмерные бифуркации интегрируемых гамильтоновых систем”, Матем. сб., 209:12 (2018), 17–56
- В. В. Ведюшкина, Интегрируемые биллиарды на клеточных комплексах и интегрируемые гамильтоновы системы, Дисс. … докт. физ.-матем. наук, МГУ, М., 2020, 284 с.
- В. А. Кибкало, А. Т. Фоменко, И. С. Харчева, “Реализация интегрируемых гамильтоновых систем биллиардными книжками”, Тр. ММО, 82, № 1, МЦНМО, М., 2021, 45–78
- В. В. Ведюшкина, В. А. Кибкало, А. Т. Фоменко, “Топологическое моделирование интегрируемых систем биллиардами: реализация числовых инвариантов”, Докл. РАН. Матем., информ., проц. упр., 493 (2020), 9–12
- В. В. Ведюшкина, В. А. Кибкало, “Реализация бильярдами числового инварианта расслоения Зейферта интегрируемых систем”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 4, 22–28
- В. В. Ведюшкина, “Локальное моделирование бильярдами слоений Лиувилля: реализация реберных инвариантов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2021, № 2, 28–32
- В. В. Ведюшкина, В. А. Кибкало, “Биллиардные книжки малой сложности и реализация слоений Лиувилля интегрируемых систем”, Чебышевский сб., 23:1 (2022), 53–82
- В. В. Ведюшкина, “Топологический тип изоэнергетических поверхностей биллиардных книжек”, Матем. сб., 212:12 (2021), 3–19
- С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, Изд-во МГУ, М., 1991, 303 с.
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые геодезические потоки на ориентируемых двумерных поверхностях и топологические биллиарды”, Изв. РАН. Сер. матем., 83:6 (2019), 63–103
- В. В. Фокичева, А. Т. Фоменко, “Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела”, Докл. РАН, 465:2 (2015), 150–153
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
- В. В. Ведюшкина, “Слоение Лиувилля бильярдной книжки, моделирующей случай Горячева–Чаплыгина”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2020, № 1, 64–68
- A. T. Fomenko, V. V. Vedyushkina, “Billiards with changing geometry and their connection with the implementation of the Zhukovsky and Kovalevskaya cases”, Russ. J. Math. Phys., 28:3 (2021), 317–332
- В. В. Ведюшкина, А. Т. Фоменко, “Эволюционные силовые биллиарды”, Изв. РАН. Сер. матем., 86:5 (2022), 116–156
- В. В. Ведюшкина, А. Т. Фоменко, “Силовые эволюционные биллиарды и биллиардная эквивалентность случая Эйлера и случая Лагранжа”, Докл. РАН. Матем., информ., проц. упр., 496 (2021), 5–9
- В. А. Кибкало, “Биллиарды с потенциалом моделируют ряд четырехмерных особенностей интегрируемых систем”, Современные проблемы математики и механики, Материалы международной конференции, посвященной 80-летию академика В. А. Садовничего, т. 2, МАКС Пресс, М., 2019, 563–566
- A. T. Fomenko, V. A. Kibkalo, “Saddle singularities in integrable Hamiltonian systems: examples and algorithms”, Contemporary approaches and methods in fundamental mathematics and mechanics, Underst. Complex Syst., Springer, Cham, 2021, 3–26
- В. В. Ведюшкина, В. А. Кибкало, С. Е. Пустовойтов, “Реализация фокусных особенностей интегрируемых систем биллиардными книжками с потенциалом Гука”, Чебышевский сб., 22:5 (2021), 44–57
Supplementary files
