Сходимость двухточечных аппроксимаций Паде к кусочно голоморфным функциям
- Авторы: Ятцелев М.Л.1,2
-
Учреждения:
- Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis
- Институт прикладной математики им. М.В. Келдыша Российской академии наук
- Выпуск: Том 212, № 11 (2021)
- Страницы: 128-164
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/133483
- DOI: https://doi.org/10.4213/sm9024
- ID: 133483
Цитировать
Аннотация
Об авторах
Максим Леонидович Ятцелев
Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis; Институт прикладной математики им. М.В. Келдыша Российской академии наук
Email: maxyatts@iupui.edu
PhD, без звания
Список литературы
- A. I. Aptekarev, M. L. Yattselev, “Pade approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280
- L. Baratchart, H. Stahl, M. Yattselev, “Weighted extremal domains and best rational approximation”, Adv. Math., 229:1 (2012), 357–407
- L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs”, Found. Comput. Math., 9:6 (2009), 675–715
- L. Baratchart, M. Yattselev, “Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights”, Int. Math. Res. Not. IMRN, 2010:22 (2010), 4211–4275
- В. И. Буслаев, “О сходимости многоточечных аппроксимаций Паде кусочно аналитических функций”, Матем. сб., 204:2 (2013), 39–72
- В. И. Буслаев, “О сходимости $m$-точечных аппроксимаций Паде набора многозначных аналитических функций”, Матем. сб., 206:2 (2015), 5–30
- P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, viii+273 pp.
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552
- P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368
- A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Panleve equations and their appearance in quantum gravity”, Comm. Math. Phys., 142:2 (1991), 313–344
- A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in $2D$ quantum gravitaty”, Comm. Math. Phys., 147:2 (1992), 395–430
- Ф. Д. Гахов, Краевые задачи, 3-е изд., Наука, М., 1977, 640 с.
- А. А. Гончар, Е. А. Рахманов, “Равновесные распределения и скорость рациональной аппроксимации аналитических функций”, Матем. сб., 134(176):3(11) (1987), 306–352
- A. B. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398
- G. Lopez, “Szegő's theorem for polynomials orthogonal with respect to varying measures”, Orthogonal polynomials and their applications (Segovia, 1986), Lecture Notes in Math., 1329, Spinger, Berlin, 1988, 255–260
- E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239
- T. Ransford, Potential theory in the complex plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995, x+232 pp.
- H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324
- H. Stahl, “Extremal domains associated with an analytic function. II”, Complex Variables Theory Appl., 4:4 (1985), 325–338
- H. Stahl, “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354
- H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:3 (1986), 225–240
- H. Stahl, “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2:3 (1986), 241–251
- H. Stahl, “The convergence of Pade approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204
- H. Stahl, “Strong asymptotics for orthonormal polynomials with varying weights”, Acta Sci. Math. (Szeged), 66:1-2 (2000), 147–192
- M. L. Yattselev, “Symmetric contours and convergent interpolation”, J. Approx. Theory, 225 (2018), 76–105
- Э. И. Зверович, “Краевые задачи теории аналитических функций в гeльдеровских классах на римановых поверхностях”, УМН, 26:1(157) (1971), 113–179
Дополнительные файлы
