Hodge level of weighted complete intersections of general type
- Authors: Przyjalkowski V.V.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 213, No 12 (2022)
- Pages: 68-85
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133485
- DOI: https://doi.org/10.4213/sm9584
- ID: 133485
Cite item
Abstract
About the authors
Victor Vladimirovich Przyjalkowski
Steklov Mathematical Institute of Russian Academy of Sciences
Email: victorprz@mi-ras.ru
Doctor of physico-mathematical sciences, no status
Russian FederationReferences
- В. И. Данилов, “Геометрия торических многообразий”, УМН, 33:2(200) (1978), 85–134
- В. В. Пржиялковский, К. А. Шрамов, “Взвешенные полные пересечения Фано большой коразмерности”, Сиб. матем. журн., 61:2 (2020), 377–384
- В. В. Пржиялковский, К. А. Шрамов, “Гладкие полные пересечения Фано основной серии в торических многообразиях”, Матем. заметки, 109:4 (2021), 590–596
- V. V. Batyrev, D. A. Cox, “On the Hodge structure of projective hypersurfaces in toric varieties”, Duke Math. J., 75:2 (1994), 293–338
- J. A. Carlson, “Extensions of mixed Hodge structures”, Journees de geometrie algebrique (Angers, 1979), Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, MD, 1980, 107–127
- D. I. Cartwright, T. Steger, “Enumeration of the 50 fake projective planes”, C. R. Math. Acad. Sci. Paris, 348:1-2 (2010), 11–13
- Jheng-Jie Chen, Jungkai A. Chen, Meng Chen, “On quasismooth weighted complete intersections”, J. Algebraic Geom., 20:2 (2011), 239–262
- A. Dimca, “Residues and cohomology of complete intersections”, Duke Math. J., 78:1 (1995), 89–100
- I. Dolgachev, “Weighted projective varieties”, Group actions and vector fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71
- E. Fatighenti, G. Mongardi, “A note on a Griffiths-type ring for complete intersections in Grassmannians”, Math. Z., 299:3-4 (2021), 1651–1672
- P. Griffiths, “On the periods of certain rational integrals. I, II”, Ann. of Math. (2), 90:3 (1969), 460–495, 496–541
- A. R. Iano-Fletcher, “Working with weighted complete intersections”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 101–173
- A. Kasprzyk, “Bounds on fake weighted projective space”, Kodai Math. J., 32:2 (2009), 197–208
- A. R. Mavlyutov, “Cohomology of complete intersections in toric varieties”, Pacific J. Math., 191:1 (1999), 133–144
- D. Mumford, “An algebraic surface with $K$ ample, $(K^2)=9$, $p_g=q=0$”, Amer. J. Math., 101:1 (1979), 233–244
- J. Nagel, “The Abel–Jacobi map for complete intersections”, Indag. Math. (N.S.), 8:1 (1997), 95–113
- M. Pizzato, T. Sano, L. Tasin, “Effective nonvanishing for Fano weighted complete intersections”, Algebra Number Theory, 11:10 (2017), 2369–2395
- V. Przyjalkowski, C. Shramov, “Hodge level for weighted complete intersections”, Collect. Math., 71:3 (2020), 549–574
- V. Przyjalkowski, C. Shramov, Weighted complete intersections, preprint
- M. Rapoport, “Complement à l'article de P. Deligne ‘La conjecture de Weil pour les surfaces $K3$’ ”, Invent. Math., 15 (1972), 227–236
- J. B. Rosser, L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math., 6 (1962), 64–94
- M. Rossi, L. Terracini, “Linear algebra and toric data of weighted projective spaces”, Rend. Semin. Mat. Univ. Politec. Torino, 70:4 (2012), 469–495
- J. J. Sylvester, “On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order”, Amer. J. Math., 5:1 (1882), 79–136
Supplementary files
