The Hartogs extension phenomenon in almost homogeneous algebraic varieties
- Authors: Feklistov S.V.1
-
Affiliations:
- Siberian Federal University
- Issue: Vol 213, No 12 (2022)
- Pages: 109-136
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133487
- DOI: https://doi.org/10.4213/sm9677
- ID: 133487
Cite item
Abstract
About the authors
Sergei Viktorovich Feklistov
Siberian Federal University
Email: sergeyfe2017@yandex.ru
without scientific degree, no status
References
- D. N. Akhiezer, Lie group actions in complex analysis, Aspects Math., E27, Friedr. Vieweg & Sohn, Braunschweig, 1995, viii+201 pp.
- M. Andersson, H. Samuelsson, Koppelman formulas and the $bar{partial}$-equation on an analytic space, Institut Mittag-Leffler preprint series, 2008, 31 pp.
- A. Andreotti, H. Grauert, “Theorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259
- A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 26:2 (1972), 325–363
- A. Andreotti, E. Vesentini, “Carleman estimates for the Laplace–Beltrami equation on complex manifolds”, Inst. Hautes Etudes Sci. Publ. Math, 25 (1965), 81–130
- C. Bănică, O. Stănăşilă, Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucuresti; John Wiley & Sons, Ltd., London–New York–Sydney, 1976, 296 pp.
- Г. Э. Бредон, Теория пучков, Наука, М., 1988, 312 с.
- M. Brion, “Une extension du theorème de Borel–Weil”, Math. Ann., 286:4 (1990), 655–660
- M. Brion, “Introduction to actions of algebraic groups”, Les cours du CIRM, 1:1 (2010), 1–22
- M. Colţoiu, J. Ruppenthal, “On Hartogs' extension theorem on $(n - 1)$-complete complex spaces”, J. Reine Angew. Math., 2009:637 (2009), 41–47
- R. J. Dwilewicz, “Holomorphic extensions in complex fiber bundles”, J. Math. Anal. Appl., 322:2 (2006), 556–565
- S. Feklistov, A. Shchuplev, “The Hartogs extension phenomenon in toric varieties”, J. Geom. Anal., 31:12 (2021), 12034–12052
- J. Gandini, “Embeddings of spherical homogeneous spaces”, Acta Math. Sin. (Engl. Ser.), 34:3 (2018), 299–340
- Комплексный анализ – многие переменные – 7, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 74, ред. Г. Грауэрт, Т. Петернел, Р. Реммерт, Р. В. Гамкрелидзе, ВИНИТИ, М., 1996, 472 с.
- Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
- R. Harvey, “The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problems”, Amer. J. Math., 91:4 (1969), 853–873
- Дж. Хамфри, Линейные алгебраические группы, Наука, M., 1980, 400 с.
- M. A. Marciniak, Holomorphic extensions in toric varieties, Thesis (Ph.D.), Missouri Univ. of Science and Technology, Missouri, 2009, 147 pp.
- M. A. Marciniak, “Holomorphic extensions in smooth toric surfaces”, J. Geom. Anal., 22:4 (2012), 911–933
- J. Merker, E. Porten, “The Hartogs extension theorem on $(n-1)$-complete complex spaces”, J. Reine Angew. Math., 2009:637 (2009), 23–39
- G. Peschke, “The theory of ends”, Nieuw Arch. Wisk. (4), 8:1 (1990), 1–12
- H. Rossi, “Vector fields on analytic spaces”, Ann. of Math. (2), 78:3 (1963), 455–467
- J.-P. Serre, “Quelques problèmes globaux relatifs aux varietes de Stein”, Colloque sur les fonctions de plusieurs variables (Bruxelles, 1953), Georges Thone, Liège; Masson & Cie, Paris, 1953, 57–68
- M. R. Sepanski, Compact Lie groups, Grad. Texts in Math., 235, Springer, New York, 2007, xiv+198 pp.
- H. Sumihiro, “Equivariant completion”, J. Math. Kyoto Univ., 14:1 (1974), 1–28
- N. Ovrelid, S. Vassiliadou, “Hartogs extension theorems on Stein spaces”, J. Geom. Anal., 20:4 (2010), 817–836
- V. Vîjîitu, “On Hartogs' extension”, Ann. Mat. Pura Appl. (4), 201:1 (2022), 487–498
- D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
Supplementary files
