On the sharp Baer-Suzuki theorem for the $\pi$-radical of a finite group
- Authors: Yang N.1, Wu Z.1, Revin D.O.2,3, Vdovin E.P.2,3
-
Affiliations:
- Jiangnan University
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 214, No 1 (2023)
- Pages: 113-154
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133504
- DOI: https://doi.org/10.4213/sm9698
- ID: 133504
Cite item
Abstract
About the authors
Nanying Yang
Jiangnan University
Email: south0418@126.com
Zhenfeng Wu
Jiangnan University
Danila Olegovich Revin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: revin@math.nsc.ru
Doctor of physico-mathematical sciences, no status
Evgeny Petrovitch Vdovin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: vdovin@math.nsc.ru
Doctor of physico-mathematical sciences, Associate professor
References
- M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Corr. reprint of the 1986 original, Cambridge Univ. Press, Cambridge, 1993, x+274 pp.
- K. Doerk, T. O. Hawkes, Finite soluble groups, De Gruyter Exp. Math., 4, Walter de Gruyter & Co., Berlin, 1992, xiv+891 pp.
- D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980, xvii+519 pp.
- I. M. Isaacs, Finite group theory, Grad. Stud. Math., 92, Amer. Math. Soc., Providence, RI, 2008, xii+350 pp.
- H. Kurzweil, B. Stellmacher, The theory of finite groups. An introduction, Universitext, Springer-Verlag, New York, 2004, xii+387 pp.
- R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133 (1957), 256–270
- M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. of Math. (2), 82 (1965), 191–212
- J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19:2 (1971), 536–537
- H. Wielandt, “Kriterien für Subnormalität in endlichen Gruppen”, Math. Z., 138 (1974), 199–203
- R. Solomon, “A brief history of the classification of the finite simple groups”, Bull. Amer. Math. Soc. (N.S.), 38:3 (2001), 315–352
- F. Timmesfeld, “Groups generated by a conjugacy class of involutions”, The Santa Cruz conference on finite groups (Univ. California, Santa Cruz, CA, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 103–109
- P. Flavell, S. Guest, R. Guralnick, “Characterizations of the solvable radical”, Proc. Amer. Math. Soc., 138:4 (2010), 1161–1170
- F. Fumagalli, G. Malle, “A generalisation of a theorem of Wielandt”, J. Algebra, 490 (2017), 474–492
- N. Gordeev, F. Grunewald, B. Kunyavskii, E. Plotkin, “A description of Baer–Suzuki type of the solvable radical of a finite group”, J. Pure Appl. Algebra, 213:2 (2009), 250–258
- N. Gordeev, F. Grunewald, B. Kunyavskiĭ, E. Plotkin, “Baer–Suzuki theorem for the solvable radical of a finite group”, C. R. Math. Acad. Sci. Paris, 347:5-6 (2009), 217–222
- N. Gordeev, F. Grunewald, B. Kunyavskiĭ, E. Plotkin, “From Thompson to Baer–Suzuki: a sharp characterization of the solvable radical”, J. Algebra, 323:10 (2010), 2888–2904
- S. Guest, “A solvable version of the Baer–Suzuki theorem”, Trans. Amer. Math. Soc., 362:11 (2010), 5909–5946
- R. Guralnick, G. Malle, “Variations on the Baer–Suzuki theorem”, Math. Z., 279:3-4 (2015), 981–1006
- R. M. Guralnick, G. R. Robinson, “On extensions of the Baer–Suzuki theorem”, Israel J. Math., 82:1-3 (1993), 281–297
- В. Д. Мазуров, А. Ю. Ольшанский, А. И. Созутов, “О бесконечных группах конечного периода”, Алгебра и логика, 54:2 (2015), 243–251
- А. С. Мамонтов, “Аналог теоремы Бэра–Сузуки для бесконечных групп”, Сиб. матем. журн., 45:2 (2004), 394–398
- А. С. Мамонтов, “О теореме Бэра–Сузуки для групп $2$-периода $4$”, Алгебра и логика, 53:5 (2014), 649–652
- Э. М. Пальчик, “О порождениях парами сопряженных элементов в конечных группах”, Докл. НАН Беларуси, 55:4 (2011), 19–20
- Д. О. Ревин, “О $pi$-теоремах Бэра–Судзуки”, Сиб. матем. журн., 52:2 (2011), 430–440
- Д. О. Ревин, “О связи между теоремами Силова и Бэра–Судзуки”, Сиб. матем. журн., 52:5 (2011), 1138–1149
- А. И. Созутов, “Об одном обобщении теоремы Бэра–Судзуки”, Сиб. матем. журн., 41:3 (2000), 674–675
- F. G. Timmesfeld, “A remark on a theorem of Baer”, Arch. Math. (Basel), 54:1 (1990), 1–3
- В. Н. Тютянов, “О существовании разрешимых нормальных подгрупп в конечных группах”, Матем. заметки, 61:5 (1997), 755–758
- В. Н. Тютянов, “Критерий непростоты для конечной группы”, Изв. Гомельского гос. ун-та им. Ф. Скорины. Вопросы алгебры, 16:3 (2000), 125–137
- M. L. Sylow, “Theorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594
- P. Hall, “A note on soluble groups”, J. London Math. Soc., 3:2 (1928), 98–105
- Nanying Yang, D. O. Revin, E. P. Vdovin, “Baer–Suzuki theorem for the $pi$-radical”, Israel J. Math., 245:1 (2021), 173–207
- R. M. Guralnick, J. Saxl, “Generation of finite almost simple groups by conjugates”, J. Algebra, 268:2 (2003), 519–571
- Н. Ян, Чж. У, Д. О. Ревин, “О точной теореме Бэра–Сузуки для $pi$-радикала: спорадические группы”, Сиб. матем. журн., 63:2 (2022), 464–472
- I. M. Isaacs, Character theory of finite groups, Pure Appl. Math., 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1976, xii+303 pp.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, xxxiv+252 pp.
- S. Guest, D. Levy, “Criteria for solvable radical membership via $p$-elements”, J. Algebra, 415 (2014), 88–111
- P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990, x+303 pp.
- D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple $K$-groups, Math. Surveys Monogr., 40.3, Amer. Math. Soc., Providence, RI, 1998, xvi+419 pp.
- R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley & Sons, London–New York–Sydney, 1972, viii+331 pp.
- S. Gonshaw, M. W. Liebeck, E. A. O'Brien, “Unipotent class representatives for finite classical groups”, J. Group Theory, 20:3 (2017), 505–525
- B. N. Cooperstein, “Minimal degree for a permutation representation of a classical group”, Israel J. Math., 30:3 (1978), 213–235
- W. M. Kantor, “Subgroups of classical groups generated by long root elements”, Trans. Amer. Math. Soc., 248:2 (1979), 347–379
- J. McLaughlin, “Some groups generated by transvections”, Arch. Math. (Basel), 18 (1967), 364–368
- J. McLaughlin, “Some subgroups of $SL_n(mathbf{F}_2)$”, Illinois J. Math., 13:1 (1969), 108–115
- M. W. Liebeck, J. Saxl, “Minimal degrees of primitive permutation group, with an application to monodromy groups of covers of Riemann surfaces”, Proc. London Math. Soc. (3), 63:2 (1991), 266–314
- M. W. Liebeck, “The classification of finite simple Moufang loops”, Math. Proc. Cambridge Philos. Soc., 102:1 (1987), 33–47
- G. Glauberman, Factorizations in local subgroups of finite groups, Reg. Conf. Ser. Math., 33, Amer. Math. Soc., Providence, RI, 1976, ix+74 pp.
- GAP – Groups, Algorithms, Programming – a system for computational discrete algebra, Version 4.11.1, 2019
Supplementary files
