Values of the $\mathfrak{sl}_2$ weight system on the chord diagrams whose intersection graphs are complete graphs.

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A weight system is a function on the chord diagrams that satisfies Vassiliev's 4">4-term relation. Using the Lie algebra sl2">sl2 we can construct the simplest nontrivial weight system. The resulting sl2">sl2 weight system takes values in the space of polynomials of one variable and is completely determined by the Chmutov-Varchenko recurrence relations.
Although the definition of the sl2">sl2 weight system is rather simple, calculations of its values are laborious, and therefore concrete values are only known for a small number of chord diagrams. As concerns the explicit form of values at chord diagrams with complete intersection graphs, Lando stated a conjecture, which initially could only be proved for the coefficients at linear terms of the values of the weight system. We prove this conjecture in full using the Chmutov-Varchenko recurrence relations and the linear operators we introduce for adding a chord to a share, which is the subset of chords of the diagram with endpoints on two selected arcs. Also, relying on the generating function of the values of the sl2">sl2 weight system at chord diagrams with complete intersection graphs, we prove that the quotient space of shares modulo the recurrence relations is isomorphic to the space of polynomials in two variables.

Sobre autores

Polina Zakorko

Department of Mathematics, National Research University "Higher School of Economics"

Autor responsável pela correspondência
Email: math-net2025_06@mi-ras.ru

without scientific degree, no status

Bibliografia

  1. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
  2. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  3. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  4. S. V. Chmutov, S. K. Lando, “Mutant knots and intersection graphs”, Algebr. Geom. Topol., 7:3 (2007), 1579–1598
  5. E. Krasilnikov, “An extension of the $mathfrak{sl}_2$ weight system to graphs with $nle 8$ vertices”, Arnold Math. J., 7:4 (2021), 609–618
  6. П. А. Филиппова, “Значения $mathfrak{sl}_2$-весовой системы на семействе графов, не являющихся графами пересечений хордовых диаграмм”, Матем. сб., 213:2 (2022), 115–148
  7. S. V. Chmutov, A. N. Varchenko, “Remarks on the Vassiliev knot invariants coming from $mathfrak{sl}_2$”, Topology, 36:1 (1997), 153–178
  8. A. Bigeni, “A generalization of the Kreweras triangle through the universal $mathfrak{sl}_2$ weight system”, J. Combin. Theory Ser. A, 161 (2019), 309–326
  9. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
  10. P. Flajolet, “Combinatorial aspects of continued fractions”, Discrete Math., 32:2 (1980), 125–161

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Zakorko P.E., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).