Spectral gaps in a thin-walled rectangular infinite box with a periodic family of cross-walls

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Dirichlet spectral problem for the Laplace operator is considered in an infinite thin-walled rectangular box with a periodic family of cross walls whose thickness is proportional to that of the walls. Using asymptotic analysis it is shown that spectral gaps open up in the case of ‘thin’ or ‘sufficiently thick’ cross-walls whose relative thickness is bounded above or below by certain characteristics of model Dirichlet problems in L- and T-shaped domains in the plane and in a union of two pairwise orthogonal halves of space layers and a quarter of a space layer. A number of open questions are stated; in particular, because of the lack of information on threshold resonances in the three-dimensional model problem, the structure of the spectrum for cross walls of any intermediate thickness remains unknown.

About the authors

Sergei Aleksandrovich Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences

Author for correspondence.
Email: srgnazarov@yahoo.co.uk
Doctor of physico-mathematical sciences, Professor

References

  1. М. Рид, Б. Саймон, Методы современной математической физики, т. 3, Теория рассеяния, Мир, М., 1982, 445 с.
  2. П. А. Кучмент, “Теория Флоке для дифференциальных уравнений в частных производных”, УМН, 37:4(226) (1982), 3–52
  3. М. М. Скриганов, “Геометрические и арифметические методы в спектральной теории многомерных периодических операторов”, Тр. МИАН СССР, 171, Наука, Л., 1985, 3–122
  4. С. А. Назаров, Б. А. Пламеневский, Эллиптические задачи в областях с кусочно гладкой границей, Наука, М., 1991, 336 с.
  5. P. Kuchment, Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birchäuser Verlag, Basel, 1993, xiv+350 pp.
  6. О. А. Ладыженская, Краевые задачи математической физики, Наука, М., 1973, 407 с.
  7. Ж.-Л. Лионс, Э. Мадженес, Неоднородные граничные задачи и их приложения, Мир, М., 1971, 371 с.
  8. М. Ш. Бирман, М. З. Соломяк, Спектральная теория самосопряженных операторов в гильбертовом пространстве, Изд-во Ленингр. ун-та, Л., 1980, 264 с.
  9. Т. Като, Теория возмущений линейных операторов, Мир, М., 1972, 740 с.
  10. W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Math. Lehrbucher und Monogr., 82, Akademie-Verlag, Berlin, 1991, 432 pp.
  11. M. Dauge, Y. Lafranche, T. Ourmières-Bonafos, “Dirichlet spectrum of the Fichera layer”, Integral Equations Operator Theory, 90:5 (2018), 60, 41 pp.
  12. F. L. Bakharev, A. I. Nazarov, “Existence of the discrete spectrum in the Fichera layers and crosses of arbitrary dimension”, J. Funct. Anal., 281:4 (2021), 109071, 19 pp.
  13. Г. Фикера, “Асимптотическое поведение электрического поля и плотности электрического заряда в окрестности сингулярных точек проводящей поверхности”, УМН, 30:3(183) (1975), 105–124
  14. P. Exner, P. Šeba, P. Štoviček, “On existence of a bound state in an $L$-shaped waveguide”, Czechoslovak J. Phys. B, 39:11 (1989), 1181–1191
  15. И. В. Камоцкий, C. А. Назаров, “О собственных функциях, локализованных около кромки тонкой области”, Проблемы матем. анализа, 19, № 1, Научная книга, Новосибирск, 1999, 105–148
  16. С. А. Назаров, “Дискретный спектр коленчатых, разветвляющихся и периодических волноводов”, Алгебра и анализ, 23:2 (2011), 206–247
  17. S. A. Nazarov, A. V. Shanin, “Trapped modes in angular joints of 2D waveguides”, Appl. Anal., 93:3 (2014), 572–582
  18. С. А. Назаров, “Локализованные волны в $T$-образном волноводе”, Акустический журн., 56:6 (2010), 747–758
  19. С. А. Назаров, “О спектре оператора Лапласа на бесконечной лестнице Дирихле”, Алгебра и анализ, 23:6 (2011), 144–177
  20. S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559
  21. D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. Lond. Math. Soc. (3), 97:3 (2008), 718–752
  22. С. А. Назаров, “Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов”, Изв. РАН. Сер. матем., 84:6 (2020), 73–130
  23. K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions”, J. Math. Anal. Appl., 449:1 (2017), 907–925
  24. Ф. Л. Бахарев, С. А. Назаров, “Критерии отсутствия и наличия ограниченных решений на пороге непрерывного спектра в объединении квантовых волноводов”, Алгебра и анализ, 32:6 (2020), 1–23
  25. С. А. Назаров, “Ограниченные решения в $mathrm{T}$-образном волноводе и спектральные свойства лестницы Дирихле”, Ж. вычисл. матем. и матем. физ., 54:8 (2014), 1299–1318
  26. М. И. Вишик, Л. А. Люстерник, “Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром”, УМН, 12:5(77) (1957), 3–122
  27. S. A. Nazarov, “The Navier–Stokes problem in thin or long tubes with periodically varying cross-sections”, ZAMM Z. Angew. Math. Mech., 80:9 (2000), 591–612
  28. Л. Берс, Ф. Джон, М. Шехтер, Уравнения с частными производными, Мир, М., 1966, 351 с.
  29. И. В. Камоцкий, С. А. Назаров, “Экспоненциально затухающие решения задачи о дифракции на жесткой периодической решетке”, Матем. заметки, 73:1 (2003), 138–140
  30. Ф. Л. Бахарев, С. Г. Матвеенко, С. А. Назаров, “Дискретный спектр крестообразных волноводов”, Алгебра и анализ, 28:2 (2016), 58–71
  31. В. Г. Мазья, Б. А. Пламеневский, “Оценки в $L_p$ и в классах Гельдера и принцип максимума Миранда–Агмона для решений эллиптических краевых задач в областях с особыми точками на границе”, Math. Nachr., 81:1 (1978), 25–82
  32. В. А. Кондратьев, “Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками”, Тр. ММО, 16, Изд-во Моск. ун-та, М., 1967, 209–292
  33. V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997, x+414 pp.
  34. С. А. Назаров, “Асимптотика решения краевой задачи в тонком цилиндре с негладкой боковой поверхностью”, Изв. РАН. Сер. матем., 57:1 (1993), 202–239
  35. G. Kirchhoff, “Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes”, J. Reine Angew. Math., 1859:56 (1859), 285–313

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Nazarov S.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».