Construction of invariant Lyapunov norms of planar dynamical systems
- Autores: Musaeva A.M.1
-
Afiliações:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Edição: Volume 214, Nº 9 (2023)
- Páginas: 27-57
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142333
- DOI: https://doi.org/10.4213/sm9821
- ID: 142333
Citar
Resumo
Sobre autores
Asiiat Musaeva
Lomonosov Moscow State University, Faculty of Mechanics and Mathematicswithout scientific degree, no status
Bibliografia
- D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp.
- D. Liberzon, A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Syst. Mag., 19:5 (1999), 59–70
- F. Blanchini, S. Miani, “A new class of universal Lyapunov functions for the control of uncertain linear systems”, IEEE Trans. Automat. Control, 44:3 (1999), 641–647
- U. Boscain, “A review on stability of switched systems for arbitrary switchings”, Geometric control and nonsmooth analysis, Ser. Adv. Math. Appl. Sci., 76, World Sci. Publ., Hackensack, NJ, 2008, 100–119
- A. P. Molchanov, Ye. S. Pyatnitskiy, “Criteria of asymptotic stability of differential and difference inclusions encountered in control theory”, Systems Control Lett., 13:1 (1989), 59–64
- F. Blanchini, S. Miani, “Piecewise-linear functions in robust control”, Robust control via variable structure and Lyapunov techniques (Benevento, 1994), Lect. Notes Control Inf. Sci., 217, Springer-Verlag London, Ltd., London, 1996, 213–243
- N. Guglielmi, L. Laglia, V. Protasov, “Polytope Lyapunov functions for stable and for stabilizable LSS”, Found. Comput. Math., 17:2 (2017), 567–623
- Н. Е. Барабанов, “Об абсолютном характеристическом показателе класса линейных нестационарных систем дифференциальных уравнений”, Сиб. матем. журн., 29:4 (1988), 12–22
- R. N. Shorten, K. S. Narendra, “Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for two stable second order linear time-invariant systems”, Proceedings of the 1999 American control conference (San Diego, CA), v. 2, IEEE, 1999, 1410–1414
- Y. Chitour, M. Gaye, P. Mason, “Geometric and asymptotic properties associated with linear switched systems”, J. Differential Equations, 259:11 (2015), 5582–5616
- I. D. Moris, An irreducible linear switching system whose unique Barabanov norm is not strictly convex
- D. V. Shatov, “Stability of a certain class of second order switched systems”, 20th IFAC conference on technology, culture, and international stability TECIS 2021 (Moscow, 2021), IFAC-PapersOnLine, 54:13 (2021), 425–430
- D. V. Shatov, “Analysis of stability and dwell time of a certain class of switched systems with second order subsystems”, 16th international conference on stability and oscillations of nonlinear control systems (Pyatnitskiy's conference) (Moscow, 2022), IEEE, 2022, 1–4
- M. Margaliot, “Stability analysis of switched systems using variational principles: an introduction”, Automatica J. IFAC, 42:12 (2006), 2059–2077
- M. Balde, U. Boscain, P. Mason, “A note on stability conditions for planar switched systems”, Internat. J. Control, 82:10 (2009), 1882–1888
- M. Balde, U. Boscain, “Stability of planar switched systems: the nondiagonalizable case”, Commun. Pure Appl. Anal., 7:1 (2008), 1–21
- M. Benaïm, S. Le Borgne, F. Malrieu, P. Zitt, “On the stability of planar randomly switched systems”, Ann. Appl. Probab., 24:1 (2014), 292–311
- L. Greco, F. Tocchini, M. Innocenti, “A geometry-based algorithm for the stability of planar switching systems”, Internat. J. Systems Sci., 37:11 (2006), 747–761
- Shen Cong, “Stability analysis for planar discrete-time linear switching systems via bounding joint spectral radius”, Systems Control Lett., 96 (2016), 7–10
- В. Ю. Протасов, “Совместный спектральный радиус и инвариантные множества линейных операторов”, Фундамент. и прикл. матем., 2:1 (1996), 205–231
- В. Ю. Протасов, “О гладкости кривых де Рама”, Изв. РАН. Сер. матем., 68:3 (2004), 139–180
- V. D. Blondel, J. Theys, A. A. Vladimirov, “An elementary counterexample to the finiteness conjecture”, SIAM J. Matrix Anal. Appl., 24:4 (2003), 963–979
- В. С. Козякин, “О вычислительных аспектах теории совместного спектрального радиуса”, Докл. РАН, 427:2 (2009), 160–164
- K. G. Hare, I. D. Morris, N. Sidorov, J. Theys, “An explicit counterexample to the Lagarias–Wang finiteness conjecture”, Adv. Math., 226:6 (2011), 4667–4701
- I. D. Morris, N. Sidorov, “On a devil's staircase associated to the joint spectral radii of a family of pairs of matrices”, J. Eur. Math. Soc. (JEMS), 15:5 (2013), 1747–1782
- A. Cicone, N. Guglielmi, S. Serra-Capizzano, M. Zennaro, “Finiteness property of pairs of $2 times 2$ sign-matrices via real extremal polytope norms”, Linear Algebra Appl., 432:2-3 (2010), 796–816
- И. Я. Новиков, В. Ю. Протасов, М. А. Скопина, Теория всплесков, Физматлит, М., 2005, 613 с.
- В. Ю. Протасов, “Фрактальные кривые и всплески”, Изв. РАН. Сер. матем., 70:5 (2006), 123–162
- J. N. Tsitsiklis, V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard–when not impossible–to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40
- V. Yu. Protasov, “The Barabanov norm is generically unique, simple, and easily computed”, SIAM J. Control Optim., 60:4 (2022), 2246–2267
Arquivos suplementares
