Traces of Sobolev spaces to irregular subsets of metric measure spaces
- Autores: Tyulenev A.I.1
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 214, Nº 9 (2023)
- Páginas: 58-143
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142334
- DOI: https://doi.org/10.4213/sm9893
- ID: 142334
Citar
Resumo
Palavras-chave
Sobre autores
Alexander Tyulenev
Steklov Mathematical Institute of Russian Academy of Sciences
Email: tyulenev-math@yandex.ru
Candidate of physico-mathematical sciences, Associate professor
Bibliografia
- J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Math. Monogr., 27, Cambridge Univ. Press, Cambridge, 2015, xii+434 pp.
- N. Gigli, E. Pasqualetto, Lectures on nonsmooth differential geometry, SISSA Springer Ser., 2, Springer, Cham, 2020, xi+204 pp.
- L. Ambrosio, N. Gigli, G. Savare, “Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces”, Rev. Mat. Iberoam., 29:3 (2013), 969–996
- L. Ambrosio, N. Gigli, G. Savare, “Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below”, Invent. Math., 195:2 (2014), 289–391
- N. J. Korevaar, R. M. Schoen, “Sobolev spaces and harmonic maps for metric space targets”, Comm. Anal. Geom., 1:3-4 (1993), 561–659
- P. Hajlasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415
- J. Cheeger, “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9:3 (1999), 428–517
- N. Shanmugalingam, “Newtonian spaces: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoam., 16:2 (2000), 243–279
- N. Gigli, A. Tyulenev, “Korevaar–Schoen's energy on strongly rectifiable spaces”, Calc. Var. Partial Differential Equations, 60:6 (2021), 235, 54 pp.
- A. Björn, J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts Math., 17, Eur. Math. Soc. (EMS), Zürich, 2011, xii+403 pp.
- R. Gibara, R. Korte, N. Shanmugalingam, Solving a Dirichlet problem for unbounded domains via a conformal transformation
- R. Gibara, N. Shanmugalingam, “Trace and extension theorems for homogeneous Sobolev and Besov spaces for unbounded uniform domains in metric measure spaces”, Труды МИАН, 323 (to appear)
- A. Jonsson, H. Wallin, Function spaces on subsets of $mathbb{R}^{n}$, Math. Rep., 2, no. 1, Harwood Acad. Publ., London, 1984, xiv+221 pp.
- L. Maly, Trace and extension theorems for Sobolev-type functions in metric spaces
- L. Maly, N. Shanmugalingam, M. Snipes, “Trace and extension theorems for functions of bounded variation”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18:1 (2018), 313–341
- V. S. Rychkov, “Linear extension operators for restrictions of function spaces to irregular open sets”, Studia Math., 140:2 (2000), 141–162
- E. Saksman, T. Soto, “Traces of Besov, Triebel–Lizorkin and Sobolev spaces on metric spaces”, Anal. Geom. Metr. Spaces, 5:1 (2017), 98–115
- P. Shvartsman, “On extensions of Sobolev functions defined on regular subsets of metric measure spaces”, J. Approx. Theory, 144:2 (2007), 139–161
- P. Shvartsman, “Sobolev $W^{1}_{p}$-spaces on closed subsets of $mathbf{R}^{n}$”, Adv. Math., 220:6 (2009), 1842–1922
- P. Shvartsman, “Whitney-type extension theorems for jets generated by Sobolev functions”, Adv. Math., 313 (2017), 379–469
- С. К. Водопьянов, А. И. Тюленев, “Пространства Соболева $W^{1}_{p}$ на $d$-толстых замкнутых подмножествах $mathbb{R}^{n}$”, Матем. сб., 211:6 (2020), 40–94
- А. И. Тюленев, “О почти точном описании следов пространств Соболева на компактах”, Матем. заметки, 110:6 (2021), 948–953
- A. I. Tyulenev, “Almost sharp descriptions of traces of Sobolev $W_{p}^{1}(mathbb{R}^{n})$-spaces to arbitrary compact subsets of $mathbb{R}^{n}$. The case $p in (1,n]$”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 26 (2025) (to appear)
- M. Garcia-Bravo, T. Ikonen, Zheng Zhu, Extensions and approximations of Banach-valued Sobolev functions
- J. Azzam, R. Schul, “An analyst's traveling salesman theorem for sets of dimension larger than one”, Math. Ann., 370:3-4 (2018), 1389–1476
- J. Azzam, M. Villa, “Quantitative comparisons of multiscale geometric properties”, Anal. PDE, 14:6 (2021), 1873–1904
- А. И. Тюленев, “Некоторые свойства множеств типа пористости, связанные с $d$-обхватом по Хаусдорфу”, Труды МИАН, 319 (2022), 298–323
- E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993, xiv+695 pp.
- A. P. Calderon, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 563–582
- Ю. А. Брудный, “Пространства, определяемые с помощью локальных приближений”, Тр. ММО, 24, Изд-во Моск. ун-та, М., 1971, 69–132
- P. Shmerkin, Porosity, dimension, and local entropies: a survey
- L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 2000, xviii+434 pp.
- M. Christ, “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61:2 (1990), 601–628
- J. Martin, W. A. Ortiz, “A Sobolev type embedding theorem for Besov spaces defined on doubling metric spaces”, J. Math. Anal. Appl., 479:2 (2019), 2302–2337
- P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, Cambridge, 1995, xii+343 pp.
- T. J. Laakso, “Ahlfors $Q$-regular spaces with arbitrary $Q > 1$ admitting weak Poincare inequality”, Geom. Funct. Anal., 10:1 (2000), 111–123
- E. Järvenpää, M. Järvenpää, A. Käenmäki, T. Rajala, S. Rogovin, V. Suomala, “Packing dimension and Ahlfors regularity of porous sets in metric spaces”, Math. Z., 266:1 (2010), 83–105
- L. Ambrosio, M. Colombo, S. Di Marino, “Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope”, Variational methods for evolving objects, Adv. Stud. Pure Math., 67, Math. Soc. Japan, Tokyo, 2015, 1–58
- L. Ambrosio, “Calculus, heat flow and curvature-dimension bounds in metric measure spaces”, Proceedings of the international congress of mathematicians (Rio de Janeiro, 2018), v. 1, World Sci. Publ., Hackensack, NJ, 2018, 301–340
- S. Di Marino, G. Speight, “The $p$-weak gradient depends on $p$”, Proc. Amer. Math. Soc., 143:12 (2015), 5239–5252
- X. Tolsa, “$BMO$, $H^{1}$ and Calderon–Zygmund operators for non doubling measures”, Math. Ann., 319:1 (2001), 89–149
- A. I. Tyulenev, “Restrictions of Sobolev $W_{p}^{1}(mathbb{R}^{2})$-spaces to planar rectifiable curves”, Ann. Fenn. Math., 47:1 (2022), 507–531
- C. Cascante, J. M. Ortega, I. E. Verbitsky, “Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels”, Indiana Univ. Math. J., 53:3 (2004), 845–882
Arquivos suplementares
