Versal families of elliptic curves with rational 3-torsion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For an arbitrary field of characteristic different from 2 and 3, we construct versal families of elliptic curves whose 3-torsion is either rational or isomorphic to $\mathbb Z/3\mathbb Z\oplus \mu_3$ as a Galois module. Bibliography: 10 titles.

About the authors

Boris Mikhailovich Bekker

St. Petersburg State University, Mathematics and Mechanics Faculty

Email: bekker@pdmi.ras.ru
Candidate of physico-mathematical sciences, Associate professor

Yuri Gennad'evich Zarhin

Department of Mathematics, Pennsylvania State University

Email: zarhin@math.psu.edu
Doctor of physico-mathematical sciences, Professor

References

  1. Б. М. Беккер, Ю. Г. Зархин, “Деление на $2$ рациональных точек на эллиптических кривых”, Алгебра и анализ, 29:4 (2017), 196–239
  2. B. M. Bekker, Yu. G. Zarhin, “Families of elliptic curves with rational torsion points of even order”, Algebraic curves and their applications, Contemp. Math., 724, Amer. Math. Soc., Providence, RI, 2019, 1–32
  3. B. M. Bekker, Yu. G. Zarhin, “Torsion points of order $ 2g {+} 1 $ on odd degree hyperelliptic curves of genus $ g $”, Trans. Amer. Math. Soc., 373:11 (2020), 8059–8094
  4. D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237
  5. K. Rubin, A. Silverberg, “Families of elliptic curves with constant $operatorname{mod} p$ representations”, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Intl. Press, Cambridge, MA, 1995, 148–161
  6. K. Rubin, A. Silverberg, “Mod 6 representations of elliptic curves”, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., 66, Part 1, Amer. Math. Soc., Providence, RI, 1999, 213–220
  7. K. Rubin, A. Silverberg, “Mod $2$ representations of elliptic curves”, Proc. Amer. Math. Soc., 129:1 (2001), 53–57
  8. A. Silverberg, “Explicit families of elliptic curves with prescribed $operatorname{mod} N$ representations”, Modular forms and Fermat's last theorem (Boston, MA, 1995), Springer, New York, 1997, 447–461
  9. J. H. Silverman, J. Tate, Rational points on elliptic curves, Undergrad. Texts Math., Springer-Verlag, New York, 1992, x+281 pp.
  10. A. Wiles, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141:3 (1995), 443–551

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Беккер Б.M., Зархин Ю.G.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).