Birational types of algebraic orbifolds
- Authors: Kresch A.1, Tschinkel Y.2,3
-
Affiliations:
- Institut für Mathematik, Universität Zürich
- Courant Institute of Mathematical Sciences
- Simons Foundation
- Issue: Vol 212, No 3 (2021)
- Pages: 54-67
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142353
- DOI: https://doi.org/10.4213/sm9386
- ID: 142353
Cite item
Abstract
Keywords
About the authors
Andrew Kresch
Institut für Mathematik, Universität ZürichPhD, Professor
Yuri Tschinkel
Courant Institute of Mathematical Sciences; Simons Foundation
Email: tschinkel@cims.nyu.edu
References
- D. Abramovich, T. Graber, A. Vistoli, “Gromov–Witten theory of Deligne–Mumford stacks”, Amer. J. Math., 130:5 (2008), 1337–1398
- D. Abramovich, K. Karu, K. Matsuki, J. Wlodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572
- D. Abramovich, M. Temkin, “Functorial factorization of birational maps for qe schemes in characteristic $0$”, Algebra Number Theory, 13:2 (2019), 379–424
- K. Behrend, B. Noohi, “Uniformization of Deligne–Mumford curves”, J. Reine Angew. Math., 2006:599 (2006), 111–153
- D. Bergh, “Functorial destackification of tame stacks with abelian stabilisers”, Compos. Math., 153:6 (2017), 1257–1315
- D. Bergh, D. Rydh, Functorial destackification and weak factorization of orbifolds
- E. Bierstone, P. D. Milman, “Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant”, Invent. Math., 128:2 (1997), 207–302
- F. Bittner, “The universal Euler characteristic for varieties of characteristic zero”, Compos. Math., 140:4 (2004), 1011–1032
- К. С. Браун, Когомологии групп, Наука, М., 1987, 384 с.
- C. Cadman, “Using stacks to impose tangency conditions on curves”, Amer. J. Math., 129:2 (2007), 405–427
- S. Keel, S. Mori, “Quotients by groupoids”, Ann. of Math. (2), 145:1 (1997), 193–213
- S. L. Kleiman, A. B. Altman, “Bertini theorems for hypersurface sections containing a subscheme”, Comm. Algebra, 7:8 (1979), 775–790
- M. Kontsevich, V. Pestun, Yu. Tschinkel, “Equivariant birational geometry and modular symbols”, J. Eur. Math. Soc. (to appear)
- M. Kontsevich, Yu. Tschinkel, “Specialization of birational types”, Invent. Math., 217:2 (2019), 415–432
- A. Kresch, “On the geometry of Deligne–Mumford stacks”, Algebraic geometry, Part 1 (Seattle, 2005), Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009, 259–271
- A. Kresch, “Destackification with restricted root operations”, Eur. J. Math., 4:4 (2018), 1421–1432
- Ю. И. Манин, “Параболические точки и дзета-функции модулярных кривых”, Изв. АН СССР. Сер. матем., 36:1 (1972), 19–66
- I. Moerdijk, “Orbifolds as groupoids: an introduction”, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 205–222
- J. Oesinghaus, “Conic bundles and iterated root stacks”, Eur. J. Math., 5:2 (2019), 518–527
- O. E. Villamayor, “Patching local uniformizations”, Ann. Sci. Ecole Norm. Sup. (4), 25:6 (1992), 629–677
Supplementary files
