Ramification filtration via deformations
- Autores: Abrashkin V.A.1,2
-
Afiliações:
- University of Durham
- Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 212, Nº 2 (2021)
- Páginas: 3-37
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142354
- DOI: https://doi.org/10.4213/sm9322
- ID: 142354
Citar
Resumo
Let $\mathscr K$ be a field of formal Laurent series with coefficients in a finite field of characteristic $p$, $\mathscr G_{< p}$ the maximal quotient of the Galois group of $\mathscr K$ of period $p$ and nilpotency class $< p$ and {$\{\mathscr G_{< p}^{(v)}\}_{v\geqslant 1}$} the filtration by ramification subgroups in the upper numbering. Let $\mathscr G_{< p}=G(\mathscr L)$ be the identification of nilpotent Artin-Schreier theory: here $G(\mathscr L)$ is the group obtained from a suitable profinite Lie $\mathbb{F}_p$-algebra $\mathscr L$ via the Campbell-Hausdorff composition law. We develop a new technique for describing the ideals $\mathscr L^{(v)}$ such that $G(\mathscr L^{(v)})=\mathscr G_{< p}^{(v)}$ and constructing their generators explicitly. Given $v_0\geqslant 1$, we construct an epimorphism of Lie algebras $\overline\eta^{\dagger}\colon \mathscr L\to \overline{\mathscr L}^{\dagger}$ and an action $\Omega_U$ of the formal group of order $p$, $\alpha_p=\operatorname{Spec}\mathbb{F}_p[U]$, $U^p=0$, on $\overline{\mathscr L}^{\dagger}$. Suppose $d\Omega_U=B^{\dagger}U$, where $B^{\dagger}\in\operatorname{Diff}\overline{\mathscr L}^{\dagger}$, and $\overline{\mathscr L}^{\dagger}[v_0]$ is the ideal of $\overline{\mathscr L}^{\dagger}$ generated by the elements of $B^{\dagger}(\overline{\mathscr L}^{\dagger})$. The main result in the paper states that $\mathscr L^{(v_0)}=(\overline\eta^{\dagger})^{-1}\overline{\mathscr L}^{\dagger}[v_0]$. In the last sections we relate this result to the explicit construction of generators of $\mathscr L^{(v_0)}$ obtained previously by the author, develop a more efficient version of it and apply it to recover the whole ramification filtration of $\mathscr G_{< p}$ from the set of its jumps.
Bibliography: 13 titles.
Palavras-chave
Sobre autores
Viktor Abrashkin
University of Durham; Steklov Mathematical Institute of Russian Academy of Sciences
Autor responsável pela correspondência
Email: victor.abrashkin@durham.ac.uk
Doctor of physico-mathematical sciences, no status
Bibliografia
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля”, Тр. С.-Петербург. матем. о-ва, 3, Изд-во СПбГУ, СПб., 1995, 47–12
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локадьного поля. II”, Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К семидесятилетию со дня рождения академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 208, Наука, Физматлит, М., 1995, 18–69
- В. А. Абрашкин, “Фильтрация ветвления группы Галуа локального поля. III”, Изв. РАН. Сер. матем., 62:5 (1998), 3–48
- V. A. Abrashkin, “On a local analogue of the Grothendieck conjecture”, Internat. J. Math., 11:2 (2000), 133–175
- V. Abrashkin, “Modified proof of a local analogue of the Grothendieck conjecture”, J. Theor. Nombres Bordeaux, 22:1 (2010), 1–50
- V. Abrashkin, R. Jenni, “The field-of-norms functor and the Hilbert symbol for higher local fields”, J. Theor. Nombres Bordeaux, 24:1 (2012), 1–39
- V. Abrashkin, “Galois groups of local fields, Lie algebras and ramification”, Arithmetic and geometry, London Math. Soc. Lecture Note Ser., 420, Cambridge Univ. Press, Cambridge, 2015, 1–23
- V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
- V. Abrashkin, “Groups of automorphisms of local fields of period $p$ and nilpotent class $
- В. А. Абрашкин, “Аналог гипотезы Гротендика для 2-мерных локальных полей конечной характеристики”, Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К 80-летию со дня рождения академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 241, Наука, МАИК “Наука/Интерпериодика”, М., 2003, 8–42
- J.-M. Fontaine, “Representations $p$-adiques des corps locaux (1-ere partie)”, The Grothendieck Festschrift, A collection of articles in honor of the 60th birthday of A. Grothendieck, v. II, Progr. Math., 87, Birkhäuser Boston, Boston, MA, 1990, 249–309
- E. I. Khukhro, $p$-automorphisms of finite $p$-groups, London Math. Soc. Lecture Note Ser., 246, Cambridge Univ. Press, Cambridge, 1998, xviii+204 pp.
- M. Lazard, “Sur les groupes nilpotents et les anneaux de Lie”, Ann. Sci. Ecole Norm. Sup. (3), 71:2 (1954), 101–190
Arquivos suplementares
