On maximizers of a convolution operator in $L_p$-spaces
- Authors: Kalachev G.V.1, Sadov S.Y.2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 210, No 8 (2019)
- Pages: 67-86
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142374
- DOI: https://doi.org/10.4213/sm9099
- ID: 142374
Cite item
Abstract
The paper is concerned with convolution operators in $\mathbb R^d$, whose kernels are in $L_q$, which act from $L_p$ into $L_s$, where $1/p+1/q=1+1/s$. It is shown that for $1< q,p,s< \infty$ there exists a maximizer (a function with $L_p$-norm $1$) at which the supremum of the $s$-norm of the convolution is attained. A special analysis is carried out for the cases in which one of the exponents $q,p$, or $s$ is $1$ or $\infty$.
Bibliography: 12 titles.
About the authors
Gleb Vyacheslavovich Kalachev
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Author for correspondence.
Email: gleb.Kalachev@yandex.ru
Candidate of physico-mathematical sciences, Scientific Employee
Sergey Yur'evich Sadov
Email: serge.sadov@gmail.com
Candidate of physico-mathematical sciences, no status
References
- M. Pearson, “Extremals for a class of convolution operators”, Houston J. Math., 25:1 (1999), 43–54
- G. H. Hardy, “The constants of certain inequalities”, J. London Math. Soc., 8:2 (1933), 114–119
- К. И. Бабенко, “Об одном неравенстве в теории интегралов Фурье”, Изв. АН СССР. Сер. матем., 25:4 (1961), 531–542
- W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182
- P. L. Lions, “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincare Anal. Non Lineaire, 1:2 (1984), 109–145
- K. Tintarev, K.-H. Fieseler, Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007, xii+264 pp.
- М. О. Корпусов, А. Г. Свешников, Нелинейный функциональный анализ и математическое моделирование в физике. Методы исследования нелинейных операторов, КРАСАНД, М., 2011, 480 с.
- В. Хенгартнер, Р. Теодореску, Функции концентрации, Наука, М., 1980, 174 с.
- В. И. Богачев, Основы теории меры, т. 1, 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с., 576 с.
- R. C. Busby, H. A. Smith, “Product-convolution operators and mixed-norm spaces”, Trans. Amer. Math. Soc., 263:2 (1981), 309–341
- J. H. B. Kemperman, “A general functional equation”, Trans. Amer. Math. Soc., 86:1 (1957), 28–56
- Я. Ацел, Ж. Домбр, Функциональные уравнения с несколькими переменными, Физматлит, М., 2003, 432 с.
Supplementary files
