Quantum system structures of quantum spaces and entanglement breaking maps
- Authors: Dosi A.A.1
-
Affiliations:
- Middle East Technical University Northern Cyprus Campus
- Issue: Vol 210, No 7 (2019)
- Pages: 21-93
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142379
- DOI: https://doi.org/10.4213/sm9074
- ID: 142379
Cite item
Abstract
About the authors
Anar Adıgüzel oğlu Dosi
Middle East Technical University Northern Cyprus Campus
Email: dosiev@yahoo.com
Doctor of physico-mathematical sciences, Professor
References
- Н. Бурбаки, Общая топология. Основные структуры, Наука, М., 1968, 272 с.
- Man Duen Choi, E. G. Effros, “Injectivity and operator spaces”, J. Funct. Anal., 24:2 (1977), 156–209
- Zizhen Chen, Zhongdan Huan, “On the continuity of the $m$th root of a continuous nonnegative definite matrix-valued function”, J. Math. Anal. Appl., 209:1 (1997), 60–66
- A. Dosiev, “Local operator spaces, unbounded operators and multinormed $C^{ast}$-algebras”, J. Funct. Anal., 255:7 (2008), 1724–1760
- A. Dosi, “Local operator algebras, fractional positivity and the quantum moment problem”, Trans. Amer. Math. Soc., 363:2 (2011), 801–856
- A. Dosi, “Quantum duality, unbounded operators, and inductive limits”, J. Math. Phys., 51:6 (2010), 063511, 43 pp.
- A. Dosi, “Noncommutative Mackey theorem”, Internat. J. Math., 22:4 (2011), 535–544
- A. Dosi, “Quotients of quantum bornological spaces”, Taiwanese J. Math., 15:3 (2011), 1287–1303
- А. Доси, “Теорема о биполяре для квантовых конусов”, Функц. анализ и его прил., 46:3 (2012), 84–89
- A. Dosi, “Multinormed $W^{ast}$-algebras and unbounded operators”, Proc. Amer. Math. Soc., 140:12 (2012), 4187–4202
- A. Dosi, “Quantum cones and their duality”, Houston J. Math., 39:3 (2013), 853–887
- A. Dosi, “Quantum systems and representation theorem”, Positivity, 17:3 (2013), 841–861
- A. Dosi, “A survey on multinormed von Neumann algebras”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 43:1 (2017), 3–67
- A. Dosi, “Multinormed semifinite von Neumann algebras, unbounded operators and conditional expectations”, J. Math. Anal. Appl., 466:1 (2018), 573–608
- E. G. Effros, Zhong-Jin Ruan, Operator spaces, London Math. Soc. Monogr. (N.S.), 23, Clarendon Press, Oxford Univ. Press, New York, 2000, xvi+363 pp.
- E. G. Effros, C. Webster, “Operator analogues of locally convex spaces”, Operator algebras and applications (Samos, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 163–207
- E. G. Effros, S. Winkler, “Matrix convexity: operator analogues of the bipolar and Hahn–Banach theorems”, J. Funct. Anal., 144:1 (1997), 117–152
- А. Я. Хелемский, Квантовый функциональный анализ в бескоординатном изложении, МЦНМО, М., 2009, 303 с.
- А. Я. Хелемский, Банаховы и полинормированные алгебры: общая теория, представления, гомологии, Наука, М., 1989, 465 с.
- А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
- H. Hogbe-Nlend, Bornologies and functional analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis, North-Holland Math. Stud., 26, Notas de Matematica, No. 62, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977, xii+144 pp.
- A. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Tensor products of operator systems”, J. Func. Anal., 261:2 (2011), 267–299
- A. S. Kavruk, V. I. Paulsen, I. G. Todorov, M. Tomforde, “Quotients, exactness, and nuclearity in the operator system category”, Adv. Math., 235 (2013), 321–360
- С. С. Кутателадзе, Основы функционального анализа, 2-е изд., Изд-во ин-та матем. СО РАН им. С. Л. Соболева, Новосибирск, 1995, 224 с.
- Дж. Мерфи, $C^*$-алгебры и теория операторов, Факториал, М., 1997, 336 с.
- V. I. Paulsen, “The maximal operator space of a normed space”, Proc. Edinburgh Math. Soc. (2), 39:2 (1996), 309–323
- V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2002, xii+300 pp.
- V. I. Paulsen, I. G. Todorov, M. Tomforde, “Operator system structures on ordered spaces”, Proc. Lond. Math. Soc. (3), 102:1 (2011), 25–49
- V. I. Paulsen, M. Tomforde, “Vector spaces with an order unit”, Indiana Univ. Math. J., 58:3 (2009), 1319–1360
- G. Pisier, Introduction to operator space theory, London Math. Soc. Lecture Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003, viii+478 pp.
- Х. Шеффер, Топологические векторные пространства, Мир, М., 1971, 359 с.
- M. Takesaki, Theory of operator algebras I, Encyclopaedia Math. Sci., 124, Oper. Alg. Non-commut. Geom., V, reprint of the 1979 ed., Springer-Verlag, Berlin, 2002, xx+415 pp.
- C. J. Webster, Local operator spaces and applications, Ph.D. thesis, Univ. California, Los Angeles, 1997, 135 pp.
- T. P. Wihler, “On the Hölder continuity of matrix functions for normal matrices”, JIPAM. J. Inequal. Pure Appl. Math., 10:4 (2009), 91, 5 pp.
Supplementary files
