Smoothness of functions and Fourier coefficients
- Authors: Dyachenko M.I.1, Mukanov A.B.2,3,4, Tikhonov S.Y.3,5,2
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Universitat Autònoma de Barcelona
- Centre de Recerca Matemàtica
- Kazakhstan Branch of Lomonosov Moscow State University
- Institució Catalana de Recerca i Estudis Avançats
- Issue: Vol 210, No 7 (2019)
- Pages: 94-119
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/142384
- DOI: https://doi.org/10.4213/sm9096
- ID: 142384
Cite item
Abstract
We consider functions represented as trigonometric series with general monotone Fourier coefficients. The main result of the paper is the equivalence of the $L_p$ modulus of smoothness, $1< p< \infty$, of such functions to certain sums of their Fourier coefficients. As applications, for such functions we give a description of the norm in the Besov space and sharp direct and inverse theorems in approximation theory.
Bibliography: 34 titles.
About the authors
Mikhail Ivanovich Dyachenko
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Author for correspondence.
Email: dyach@mail.ru
Doctor of physico-mathematical sciences, Professor
Askhat Birlesovich Mukanov
Universitat Autònoma de Barcelona; Centre de Recerca Matemàtica; Kazakhstan Branch of Lomonosov Moscow State University
Email: mukanov.askhat@gmail.com
Sergei Yur'evich Tikhonov
Centre de Recerca Matemàtica; Institució Catalana de Recerca i Estudis Avançats; Universitat Autònoma de Barcelona
Email: stikhonov@crm.cat
Candidate of physico-mathematical sciences, no status
References
- Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
- S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114:1-2 (2007), 61–78
- G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51:2 (1948), 135–149
- А. Ф. Тиман, М. Ф. Тиман, “Обобщенный модуль непрерывности и наилучшее приближение в среднем”, Докл. АН СССР, 71:1 (1950), 17–20
- D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312
- А. А. Конюшков, “О классах Липшица”, Изв. АН СССР. Сер. матем., 21:3 (1957), 423–448
- S. Aljančic, “On the integral moduli of continuity in $L_p (1
- М. К. Потапов, M. Бериша, “Модули гладкости и коэффициенты Фурье периодических функций одного переменного”, Publ. Inst. Math. (Beograd) (N.S.), 26(40) (1979), 215–228
- S. Aljančic, M. Tomic, “Über den Stetigkeitsmodul von Fourier-Reihen mit monotonen Koeffizienten”, Math. Z., 88:3 (1965), 274–284
- R. Askey, “Smoothness conditions for Fourier series with monotone coefficients”, Acta Sci. Math. (Szeged), 28 (1967), 169–171
- R. P. Boas Jr., Integrability theorems for trigonometric transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag New York Inc., New York, 1967, v+66 pp.
- Y. Kolomoitsev, S. Tikhonov, “Hardy–Littlewood and Ulyanov inequalities”, Mem. Amer. Math. Soc. (to appear)
- Б. В. Симонов, С. Ю. Тихонов, “Теоремы вложения в конструктивной теории приближений”, Матем. сб., 199:9 (2008), 107–148
- S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735
- S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39
- D. B. H. Cline, “Regularly varying rates of decrease for moduli of continuity and Fourier transforms of functions on $mathbb{R}^d$”, J. Math. Anal. Appl., 159:2 (1991), 507–519
- W. Trebels, “Estimates for moduli of continuity of functions given by their Fourier transform”, Constructive theory of functions of several variables (Math. Res. Inst., Oberwolfach, 1976), Lecture Notes in Math., 571, Springer, Berlin, 1977, 277–288
- J. Garcia-Cuerva, V. I. Kolyada, “Rearrangement estimates for Fourier transforms in $L^p$ and $H^p$ in terms of moduli of continuity”, Math. Nachr., 228 (2001), 123–144
- R. J. Le, S. P. Zhou, “A remark on “two-sided” monotonicity condition: an application to $L_p$ convergence”, Acta Math. Hungar., 113:1-2 (2006), 159–169
- L. Leindler, “Relations among Fourier coefficients and sum-functions”, Acta Math. Hungar., 104:1-2 (2004), 171–183
- C. Oehring, “Asymptotics of rearranged trigonometric and Walsh–Fourier coefficients of smooth functions”, J. Math. Anal. Appl., 164:2 (1992), 422–446
- B. Szal, “On the integral modulus of continuity of Fourier series”, Acta Math. Hungar., 131:1-2 (2011), 138–159
- Dansheng Yu, Songping Zhou, “On relations among Fourier coefficients and sum-functions”, Studia Sci. Math. Hungar., 45:3 (2008), 301–319
- E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098
- Lei Feng, V. Totik, Song Ping Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. (Engl. Ser.), 30:8 (2014), 1289–1296
- M. I. Dyachenko, S. Yu. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097
- M. Dyachenko, E. Nursultanov, A. Kankenova, “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971
- M. I. Dyachenko, E. D. Nursultanov, A. M. Zhantakbayeva, “Hardy–Littlewood type theorems”, Eurasian Math. J., 4:2 (2013), 140–143
- Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
- А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
- R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp.
- F. Dai, Z. Ditzian, S. Tikhonov, “Sharp Jackson inequalities”, J. Approx. Theory, 151:1 (2008), 86–112
- А. А. Конюшков, “Наилучшие приближения тригонометрическими полиномами и коэффициенты Фурье”, Матем. сб., 44(86):1 (1958), 53–84
- M. Dyachenko, A. Mukanov, S. Tikhonov, “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Studia Math. (to appear)
Supplementary files
