Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An elliptic Dirichlet boundary value problem is studied which has a nonnegative parameter $\lambda$ multiplying a discontinuous nonlinearity on the right-hand side of the equation. The nonlinearity is zero for values of the phase variable not exceeding some positive number in absolute value and grows sublinearly at infinity. For homogeneous boundary conditions, it is established that the spectrum $\sigma$ of the nonlinear problem under consideration is closed ($\sigma$ consists of those parameter values for which the boundary value problem has a nonzero solution). A positive lower bound and an upper bound are obtained for the smallest value of the spectrum, $\lambda^*$. The case when the boundary function is positive, while the nonlinearity is zero for nonnegative values of the phase variable and nonpositive for negative values, is also considered. This problem is transformed into a problem with homogeneous boundary conditions. Under the additional assumption that the nonlinearity is equal to the difference of functions that are nondecreasing in the phase variable, it is proved that $\sigma=[\lambda^*,+\infty)$ and that for each $\lambda\in\sigma$ the problem has a nontrivial semiregular solution. If there exists a positive constant $M$ such that the sum of the nonlinearity and $Mu$ is a function which is nondecreasing in the phase variable $u$, then for any $\lambda\in\sigma$ the boundary value problem has a minimal nontrivial solution $u_\lambda(x)$. The required solution is semiregular, and $u_\lambda(x)$ is a decreasing mapping with respect to $\lambda$ on $[\lambda^*,+\infty)$. Applications of the results to the Gol'dshtik mathematical model for separated flows in an incompressible fluid are considered. Bibliography: 37 titles.

Sobre autores

Vyacheslav Pavlenko

Chelyabinsk State University

Email: pavlenko-vn@yandex.ru
Doctor of physico-mathematical sciences, Professor

Dmitriy Potapov

Saint Petersburg State University

Email: d.potapov@spbu.ru
Candidate of physico-mathematical sciences, Associate professor

Bibliografia

  1. О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, Наука, М., 1964, 538 с.
  2. М. А. Красносельский, А. В. Покровский, Системы с гистерезисом, Наука, М., 1983, 272 с.
  3. М. А. Красносельский, А. В. Покровский, “Правильные решения уравнений с разрывными нелинейностями”, Докл. АН СССР, 226:3 (1976), 506–509
  4. В. Н. Павленко, Д. К. Потапов, “Существование полуправильных решений эллиптических спектральных задач с разрывными нелинейностями”, Матем. сб., 206:9 (2015), 121–138
  5. В. Н. Павленко, Д. К. Потапов, “Существование решений невариационной эллиптической краевой задачи с параметром и разрывной нелинейностью”, Матем. тр., 19:1 (2016), 91–105
  6. G. Barletta, A. Chinnì, D. O'Regan, “Existence results for a Neumann problem involving the $p(x)$-Laplacian with discontinuous nonlinearities”, Nonlinear Anal. Real World Appl., 27 (2016), 312–325
  7. S. Bensid, “Perturbation of the free boundary in elliptic problem with discontinuities”, Electron. J. Differential Equations, 2016 (2016), 132, 14 pp.
  8. R. Dhanya, S. Prashanth, S. Tiwari, K. Sreenadh, “Elliptic problems in $mathbb{R}^N$ with critical and singular discontinuous nonlinearities”, Complex Var. Elliptic Equ., 61:12 (2016), 1656–1676
  9. В. Н. Павленко, Д. К. Потапов, “Существование двух нетривиальных решений в задачах на собственные значения для уравнений с разрывными правыми частями при достаточно больших значениях спектрального параметра”, Матем. сб., 208:1 (2017), 165–182
  10. В. Н. Павленко, Д. К. Потапов, “Существование трех нетривиальных решений эллиптической краевой задачи с разрывной нелинейностью в случае сильного резонанса”, Матем. заметки, 101:2 (2017), 247–261
  11. В. Н. Павленко, Д. К. Потапов, “Об оценках спектрального параметра эллиптических краевых задач с разрывными нелинейностями”, Сиб. матем. журн., 58:2 (2017), 375–385
  12. S. Heidarkhani, F. Gharehgazlouei, “Multiplicity of elliptic equations involving the $p$-Laplacian with discontinuous nonlinearities”, Complex Var. Elliptic Equ., 62:3 (2017), 413–429
  13. Д. К. Потапов, “О решениях задачи Гольдштика”, Сиб. журн. вычисл. матем., 15:4 (2012), 409–415
  14. D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem for separated flows with an external perturbation”, Electron. J. Differential Equations, 2013 (2013), 255, 6 pp.
  15. Y. Zhang, I. Danaila, “Existence and numerical modelling of vortex rings with elliptic boundaries”, Appl. Math. Model., 37:7 (2013), 4809–4824
  16. Д. К. Потапов, “Об одной задаче электрофизики с разрывной нелинейностью”, Дифференц. уравнения, 50:3 (2014), 421–424
  17. В. Н. Павленко, Д. К. Потапов, “Задача Эленбааса об электрической дуге”, Матем. заметки, 103:1 (2018), 92–100
  18. P. Nistri, “Positive solutions of a non-linear eigenvalue problem with discontinuous non-linearity”, Proc. Roy. Soc. Edinburgh Sect. A, 83:1-2 (1979), 133–145
  19. W. Allegretto, P. Nistri, “Elliptic equations with discontinuous nonlinearities”, Topol. Methods Nonlinear Anal., 2:2 (1993), 233–251
  20. Д. К. Потапов, “Об одной оценке сверху величины бифуркационного параметра в задачах на собственные значения для уравнений эллиптического типа с разрывными нелинейностями”, Дифференц. уравнения, 44:5 (2008), 715–716
  21. G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059
  22. Д. Гилбарг, Н. Трудингер, Эллиптические дифференциальные уравнения с частными производными второго порядка, Наука, М., 1989, 464 с.
  23. В. Н. Павленко, “Существование решений у нелинейных уравнений с разрывными монотонными операторами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1973, № 6, 21–29
  24. М. А. Гольдштик, “Математическая модель отрывных течений несжимаемой жидкости”, Докл. АН СССР, 147:6 (1962), 1310–1313
  25. Д. К. Потапов, “Бифуркационные задачи для уравнений эллиптического типа с разрывными нелинейностями”, Матем. заметки, 90:2 (2011), 280–284
  26. Н. Данфорд, Дж. Т. Шварц, Линейные операторы, т. 2, Спектральная теория. Самосопряженные операторы в гильбертовом пространстве, Мир, М., 1966, 1063 с.
  27. J. Douchet, “Pairs of positive solutions of elliptic partial differential equations with discontinuous nonlinearities”, J. Math. Anal. Appl., 90:2 (1982), 536–547
  28. Д. К. Потапов, “Непрерывные аппроксимации задачи Гольдштика”, Матем. заметки, 87:2 (2010), 262–266
  29. Ф. Кларк, Оптимизация и негладкий анализ, Наука, М., 1988, 280 с.
  30. Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129
  31. L. Gasinski, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman & Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp.
  32. В. Н. Павленко, “О существовании полуправильных решений первой краевой задачи для уравнения параболического типа с разрывной немонотонной нелинейностью”, Дифференц. уравнения, 27:3 (1991), 520–526
  33. В. Н. Павленко, “Управление сингулярными распределенными системами параболического типа с разрывными нелинейностями”, Укр. матем. журн., 46:6 (1994), 729–736
  34. В. Н. Павленко, О. В. Ульянова, “Метод верхних и нижних решений для уравнений эллиптического типа с разрывными нелинейностями”, Изв. вузов. Матем., 1998, № 11, 69–76
  35. М. А. Красносельский, Положительные решения операторных уравнений, Физматгиз, М., 1962, 394 с.
  36. В. Н. Павленко, Д. К. Потапов, “О существовании луча собственных значений для уравнений с разрывными операторами”, Сиб. матем. журн., 42:4 (2001), 911–919
  37. I. Massabo, C. A. Stuart, “Elliptic eigenvalue problems with discontinuous nonlinearities”, J. Math. Anal. Appl., 66:2 (1978), 261–281

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Павленко В.N., Потапов Д.K., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».