Automatic continuity of a locally bounded homomorphism of Lie groups on the commutator subgroup
- Authors: Shtern A.I.1,2,3
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Scientific Research Institute for System Studies of RAS
- Issue: Vol 215, No 6 (2024)
- Pages: 151-158
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/256520
- DOI: https://doi.org/10.4213/sm9984
- ID: 256520
Cite item
Abstract
About the authors
Alexander Isaakovich Shtern
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics; Scientific Research Institute for System Studies of RAS
Email: rroww@mail.ru
Candidate of physico-mathematical sciences, Associate professor
References
- A. I. Shtern, “Corrected automatic continuity conditions for finite-dimensional representations of connected Lie groups”, Russ. J. Math. Phys., 21:1 (2014), 133–134
- А. И. Штерн, “Вариант теоремы Ван дер Вардена и доказательство гипотезы Мищенко для гомоморфизмов локально компактных групп”, Изв. РАН. Сер. матем., 72:1 (2008), 183–224
- А. И. Штерн, “Конечномерные квазипредставления связных групп Ли и гипотеза Мищенко”, Фундамент. и прикл. матем., 13:7 (2007), 85–225
- Р. Энгелькинг, Общая топология, Мир, М., 1986, 752 с.
- A. I. Shtern, “The discontinuity group of a locally bounded homomorphism of a connected Lie group into a connected Lie group is commutative”, Russ. J. Math. Phys., 30:3 (2023), 397–398
- М. А. Наймарк, Теория представлений групп, Наука, М., 1976, 560 с.
- I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Ser. Modern Anal., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974, xiii+430 pp.
Supplementary files
