Classification of nonsingular four-dimensional flows with a untwisted saddle orbit
- Authors: Galkin V.D.1, Pochinka O.V.1, Shubin D.D.1
-
Affiliations:
- National Research University – Higher School of Economics in Nizhny Novgorod
- Issue: Vol 215, No 11 (2024)
- Pages: 65-91
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/279063
- DOI: https://doi.org/10.4213/sm10091
- ID: 279063
Cite item
Abstract
Keywords
About the authors
Vladislav Dmitrievich Galkin
National Research University – Higher School of Economics in Nizhny Novgorod
Email: vgalkin@hse.ru
Olga Vital'evna Pochinka
National Research University – Higher School of Economics in Nizhny Novgorod
Email: olga-pochinka@yandex.ru
ORCID iD: 0000-0002-6587-5305
Doctor of physico-mathematical sciences, no status
Danila Denisovich Shubin
National Research University – Higher School of Economics in Nizhny Novgorod
Email: schub.danil@yandex.ru
References
- P. M. Akhmet'ev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp.
- F. Bonahon, J.-P. Otal, “Scindements de Heegaard des espaces lenticulaires”, Ann. Sci. Ecole Norm. Sup. (4), 16:3 (1983), 451–466
- C. Bonatti, V. Z. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
- C. Bonatti, V. Grines, O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558
- J. Franks, “Nonsingular Smale flows on $S^3$”, Topology, 24:3 (1985), 265–282
- D. Gabai, “Foliations and the topology of 3-manifolds. III”, J. Differential Geom., 26:3 (1987), 479–536
- C. McA. Gordon, J. Luecke, “Knots are determined by their complements”, J. Amer. Math. Soc., 2:2 (1989), 371–415
- V. Grines, Yu. Levchenko, V. Medvedev, O. Pochinka, “The topological classification of structurally stable 3-diffeomorphisms with two-dimensional basic sets”, Nonlinearity, 28:11 (2015), 4081–4102
- В. З. Гринес, Е. В. Жужома, В. С. Медведев, О. В. Починка, “Глобальные аттрактор и репеллер диффеоморфизмов Морса–Смейла”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Труды МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 111–133
- В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948, 232 с.
- M. C. Irwin, “A classification of elementary cycles”, Topology, 9:1 (1970), 35–47
- N. L. Max, “Homeomorphisms of $S^{n}times S^{1}$”, Bull. Amer. Math. Soc., 73:6 (1967), 939–942
- W. D. Neumann, Notes on geometry and 3-manifolds, Citeseer, 1996
- E. M. Osenkov, O. V. Pochinka, Morse–Smale 3-diffeomorphisms with saddles of the same unstable manifold dimension
- D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172
- O. V. Pochinka, D. D. Shubin, “On 4-dimensional flows with wildly embedded invariant manifolds of a periodic orbit”, Appl. Math. Nonlinear Sci., 5:2 (2020), 261–266
- O. V. Pochinka, D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499
- D. Rolfsen, Knots and links, AMS Chelsea Publ. Ser., 346, Reprint with corr. of the 1976 ed., Amer. Math. Soc., Providence, RI, 2003, ix+439 pp.
- С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
- Я. Л. Уманский, “Необходимые и достаточные условия топологической эквивалентности трехмерных динамических систем Морса–Смейла с конечным числом особых траекторий”, Матем. сб., 181:2 (1990), 212–239
- V. Galkin, O. Pochinka, D. Shubin, Classification of NMS-flows with unique twisted saddle orbit on orientable 4-manifolds
- Bin Yu, “Behavior $0$ nonsingular Morse Smale flows on $S^3$”, Discrete Contin. Dyn. Syst., 36:1 (2016), 509–540
- О. В. Починка, Д. Д. Шубин, “Неособые потоки Морса-Смейла с тремя периодическими орбитами на ориентируемых $3$-многообразиях”, Матем. заметки, 112:3 (2022), 426–443
- А. О. Пришляк, “Полный топологический инвариант потоков Морса–Смейла и разложений на ручки трeхмерных многообразий”, Фундамент. и прикл. матем., 11:4 (2005), 185–196
Supplementary files
