Lower semicontinuity of relative entropy disturbance and its consequences
- 作者: Shirokov M.E.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 215, 编号 11 (2024)
- 页面: 122-156
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/279065
- DOI: https://doi.org/10.4213/sm10107
- ID: 279065
如何引用文章
详细
作者简介
Maksim Shirokov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: msh@mi-ras.ru
Scopus 作者 ID: 7004175647
Researcher ID: K-8365-2013
Doctor of physico-mathematical sciences, Head Scientist Researcher
参考
- H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14:2 (1962), 59–85
- B. Schumacher, M. D. Westmoreland, Relative entropy in quantum information theory
- V. Vedral, “The role of relative entropy in quantum information theory”, Rev. Modern Phys., 74:1 (2002), 197–234
- M. Ohya, D. Petz, Quantum entropy and its use, Theoret. Math. Phys., Corr. 2nd pr., Springer-Verlag, Berlin, 2004, 357 pp.
- A. Wehrl, “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260
- А. С. Холево, Статистическая структура квантовой теории, ИКИ, М.–Ижевск, 2003, 191 с.
- G. Lindblad, “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151
- G. Lindblad, “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119
- D. Petz, “Sufficiency of channels over von Neumann algebras”, Quart. J. Math. Oxford Ser. (2), 39:153 (1988), 97–108
- D. Sutter, M. Tomamichel, A. W. Harrow, “Strengthened monotonicity of relative entropy via pinched Petz recovery map”, IEEE Trans. Inform. Theory, 62:5 (2016), 2907–2913
- M. M. Wilde, “Recoverability in quantum information theory”, Proc. A, 471:2182 (2015), 20150338, 19 pp.
- M. Junge, R. Renner, D. Sutter, M. M. Wilde, A. Winter, “Universal recovery maps and approximate sufficiency of quantum relative entropy”, Ann. Henri Poincare, 19:10 (2018), 2955–2978
- M. E. Shirokov, “Strong convergence of quantum channels: continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204, 14 pp.
- А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
- М. Е. Широков, “Критерий сходимости квантовой относительной энтропии и его использование”, Матем. сб., 213:12 (2022), 137–174
- M. M. Wilde, Quantum information theory, Cambridge Univ. Press, Cambridge, 2013, xvi+655 pp.
- B. Simon, Operator theory, Compr. Course Anal., Part 4, Amer. Math. Soc., Providence, RI, 2015, xviii+749 pp.
- А. С. Холево, “Некоторые оценки для количества информации, передаваемого квантовым каналом связи”, Пробл. передачи информ., 9:3 (1973), 3–11
- W. F. Stinespring, “Positive functions on $C^*$-algebras”, Proc. Amer. Math. Soc., 6:2 (1955), 211–216
- G. F. Dell'Antonio, “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20:2 (1967), 413–429
- M. J. Donald, “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–373
- F. Buscemi, M. Horodecki, “Towards a unified approach to information-disturbance tradeoffs in quantum measurements”, Open Syst. Inf. Dyn., 16:1 (2009), 29–48
- F. Buscemi, S. Das, M. M. Wilde, “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314, 11 pp.
- M. Berta, F. G. S. L. Brandao, C. Majenz, M. M. Wilde, Deconstruction and conditional erasure of quantum correlations
- A. Capel, A. Lucia, D. Perez-Garcia, “Quantum conditional relative entropy and quasi-factorization of the relative entropy”, J. Phys. A, 51:48 (2018), 484001, 41 pp.
- T. S. Cubitt, M. B. Ruskai, G. Smith, “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp.
- М. Е. Широков, “Меры корреляций в бесконечномерных квантовых системах”, Матем. сб., 207:5 (2016), 93–142
- M. E. Shirokov, “Correlation measures of a quantum state and information characteristics of a quantum channel”, J. Math. Phys., 64:11 (2023), 112201, 31 pp.
- M. E. Shirokov, “Convergence conditions for the quantum relative entropy and other applications of the generalized quantum Dini lemma”, Lobachevskii J. Math., 43:7 (2022), 1755–1777
- М. Рид, Б. Саймон, Методы современной математической физики, т. 1, Функциональный анализ, Мир, М., 1977, 357 с.
- M. E. Shirokov, A. V. Bulinski, “On quantum channels and operations preserving finiteness of the von Neumann entropy”, Lobachevskii J. Math., 41:12 (2020), 2383–2396
- T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, 2006, xxiv+748 pp.
- C. M. Bishop, Pattern recognition and machine learning, Inf. Sci. Stat., Springer, New York, 2006, xx+738 pp.
- F. Nielsen, On the Kullback–Leibler divergence between location-scale densities
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- П. Биллингсли, Сходимость вероятностных мер, Наука, М., 1977, 351 с.
- Ch. Gerry, P. L. Knight, Introductory quantum optics, Cambridge Univ. Press, Cambridge, 2005, xiv+317 pp.
- R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788
- E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams”, Phys. Rev. Lett., 10:7 (1963), 277–279
- М. Е. Широков, “О полунепрерывности снизу квантовой условной взаимной информации и ее следствиях”, Математика квантовых технологий, Сборник статей, Труды МИАН, 313, МИАН, М., 2021, 219–244
- G. Lindblad, “Entropy, information and quantum measurements”, Comm. Math. Phys., 33:4 (1973), 305–322
- A. Bluhm, A. Capel, P. Gondolf, A. Perez-Hernandez, “Continuity of quantum entropic quantities via almost convexity”, IEEE Trans. Inform. Theory, 69:9 (2023), 5869–5901
补充文件
