Equidistribution of zeros of random polynomials and random polynomial mappings on $\pmb{\mathbb{C}}^{m}$
- Авторлар: Günyüz O.1
-
Мекемелер:
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Шығарылым: Том 216, № 1 (2025)
- Беттер: 61-78
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306672
- DOI: https://doi.org/10.4213/sm9819
- ID: 306672
Дәйексөз келтіру
Аннотация
We study the equidistribution problem of zeros in relation to a sequence of $Z$-asymptotically Chebyshev polynomials on $\mathbb{C}^{m}$. We use certain results obtained in a very recent work by Bayraktar, Bloom and Levenberg and obtain an equidistribution result in a more general probabilistic setting than what the paper of Bayraktar, Bloom and Levenberg considers, even though the basis polynomials they use are more general than $Z$-asymptotically Chebyshev polynomials. Our equidistribution result is based on the expected distribution and the variance estimate of random zero currents corresponding to the zero sets (zero divisors) of polynomials. This equidistribution result of general nature shows that equidistribution turns out to be true without the random coefficients being independent and identically distributed, which also means that there is no need to use any specific probability distribution function for these random coefficients. In § 3, unlike in the $1$-codimensional case, we study the basis of polynomials orthogonal with respect to the $L^{2}$-inner product defined by the weighted asymptotically Bernstein–Markov measures on a given locally regular compact set, and with a probability distribution studied well by Bayraktar and including the (standard) Gaussian and the Fubini–Study probability distributions as special cases we have an equidistribution result for codimensions larger than $1$. Bibliography: 35 titles.
Негізгі сөздер
Авторлар туралы
Ozan Günyüz
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
Хат алмасуға жауапты Автор.
Email: ozangunyuz@alumni.sabanciuniv.edu
Doctor of physico-mathematical sciences, Senior Researcher
Әдебиет тізімі
- Н. И. Ахиезер, Лекции по теории аппроксимации, 2-е изд., Наука, М., 1965, 407 с.
- A. Bojnik, O. Günyüz, Random systems of holomorphic sections of a sequence of line bundles on compact Kähler manifolds
- T. Bayraktar, “Equidistribution of zeros of random holomorphic sections”, Indiana Univ. Math. J., 65:5 (2016), 1759–1793
- T. Bayraktar, “Zero distribution of random sparse polynomials”, Michigan Math. J., 66:2 (2017), 389–419
- T. Bayraktar, T. Bloom, N. Levenberg, “Random polynomials in several complex variables”, J. Anal. Math., 153:1 (2024), 219–245
- A. Bloch, G. Polya, “On the roots of certain algebraic equations”, Proc. London Math. Soc. (2), 33:2 (1931), 102–114
- T. Bloom, “On families of polynomials which approximate the pluricomplex Green function”, Indiana Univ. Math. J., 50:4 (2001), 1545–1566
- T. Bloom, “Random polynomials and Green functions”, Int. Math. Res. Not. IMRN, 2005:28 (2005), 1689–1708
- T. Bloom, “Random polynomials and (pluri)potential theory”, Ann. Polon. Math., 91:2-3 (2007), 131–141
- T. Bloom, B. Shiffman, “Zeros of random polynomials on $mathbb C^m$”, Math. Res. Lett., 14:3 (2007), 469–479
- T. Bloom, N. Levenberg, “Random polynomials and pluripotential-theoretic extremal functions”, Potential Anal., 42:2 (2015), 311–334
- T. Bloom, D. Dauvergne, “Asymptotic zero distribution of random orthogonal polynomials”, Ann. Probab., 47:5 (2019), 3202–3230
- T. Bayraktar, D. Coman, G. Marinescu, “Universality results for zeros of random holomorphic sections”, Trans. Amer. Math. Soc., 373:6 (2020), 3765–3791
- D. Coman, G. Marinescu, “Equidistribution results for singular metrics on line bundles”, Ann. Sci. Ec. Norm. Super. (4), 48:3 (2015), 497–536
- J.-P. Demailly, “Monge–Ampère operators, Lelong numbers and intersection theory”, Complex analysis and geometry, Univ. Ser. Math., Plenum Press, New York, 1993, 115–193
- P. Erdös, P. Turan, “On the distribution of roots of polynomials”, Ann. of Math. (2), 51 (1950), 105–119
- J. E. Fornaess, N. Sibony, “Oka's inequality for currents and applications”, Math. Ann., 301:3 (1995), 399–419
- J. P. Forrester, G. Honner, “Exact statistical properties of the zeros of complex random polynomials”, J. Phys. A, 32:16 (1999), 2961–2981
- O. Günyüz, Equidistribution for random polynomials and systems of random holomorphic sections
- J. M. Hammersley, “The zeros of a random polynomial”, Proceedings of the third Berkeley symposium on mathematical statistics and probability, 1954–1955, v. II, Part 1, Univ. California Press, Berkeley–Los Angeles, CA, 1956, 89–111
- J. H. Hannay, “Chaotic analytic zero points: exact statistics for those of a random spin state”, J. Phys. A, 29:5 (1996), L101–L105
- C. P. Hughes, A. Nikeghbali, “The zeros of random polynomials cluster uniformly near the unit circle”, Compos. Math., 144:3 (2008), 734–746
- M. Kac, “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320
- J. E. Littlewood, A. C. Offord, “On the number of real roots of a random algebraic equation. III”, Матем. сб., 12(54):3 (1943), 277–286
- M. Klimek, Pluripotential theory, London Math. Soc. Monogr. (N.S.), 6, The Clarendon Press, Oxford Univ. Press, New York, 1991, xiv+266 pp.
- F. Leja, “Problèmes à resoudre poses à la conference”, Colloq. Math., 7 (1959), 151–153
- S. Nonnenmacher, A. Voros, “Chaotic eigenfunctions in phase space”, J. Statist. Phys., 92:3-4 (1998), 431–518
- J. M. Rojas, “On the average number of real roots of certain random sparse polynomial systems”, The mathematics of numerical analysis (Park City, UT, 1995), Lectures in Appl. Math., 32, Amer. Math. Soc., Providence, RI, 1996, 689–699
- M. Shub, S. Smale, “Complexity of Bezout's theorem. II. Volumes and probabilities”, Computational algebraic geometry (Nice, 1992), Progr. Math., 109, Birkhäuser Boston, Inc., Boston, MA, 1993, 267–285
- B. Shiffman, “Convergence of random zeros on complex manifolds”, Sci. China Ser. A, 51:4 (2008), 707–720
- B. Shiffman, Asymptotic expansion of the variance of random zeros on complex manifolds
- B. Shiffman, S. Zelditch, “Distribution of zeros of random and quantum chaotic sections of positive line bundles”, Comm. Math. Phys., 200:3 (1999), 661–683
- B. Shiffman, S. Zelditch, “Number variance of random zeros on complex manifolds”, Geom. Funct. Anal., 18:4 (2008), 1422–1475
- B. Shiffman, S. Zelditch, “Number variance of random zeros on complex manifolds. II. Smooth statistics”, Pure Appl. Math. Q., 6:4 (2010), 1145–1167
- В. П. Захарюта, “Трансфинитный диаметр, постоянные Чебышева и емкость для компакта в $mathbf C^n$”, Матем. сб., 96(138):3 (1975), 374–389
Қосымша файлдар
