Lyapunov stability of an equilibrium of the nonlocal continuity equation
- Authors: Averboukh Y.V.1, Volkov A.M.1
-
Affiliations:
- N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Issue: Vol 216, No 2 (2025)
- Pages: 3-31
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306677
- DOI: https://doi.org/10.4213/sm10084
- ID: 306677
Cite item
Abstract
About the authors
Yurii Vladimirovich Averboukh
N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Email: ayv@imm.uran.ru
Doctor of Science, Head Scientist Researcher
Aleksei Mikhailovich Volkov
N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Email: volkov@imm.uran.ru
without scientific degree, Scientific Employee
References
- V. C. Boffi, G. Spiga, “Continuity equation in the study of nonlinear particle-transport evolution problems”, Phys. Rev. A, 29:2 (1984), 782–790
- M. Tucci, M. Volonteri, “Constraining supermassive black hole evolution through the continuity equation”, Astronom. and Astrophys., 600 (2017), A64, 17 pp.
- L. W. Botsford, “Optimal fishery policy for size-specific, density-dependent population models”, J. Math. Biol., 12:3 (1981), 265–293
- C. di Mario, N. Meneveau, R. Gil, P. Jaegere, P. J. de Feyter, C. J. Slager, J. R. T. C. Roelandt, P. W. Serruys, “Maximal blood flow velocity in severe coronary stenoses measured with a Doppler guidewire: limitations for the application of the continuity equation in the assessment of stenosis severity”, Am. J. Cardiol., 71:14 (1993), D54–D61
- A. Pluchino, V. Latora, A. Rapisarda, “Changing opinions in a changing world: a new perspective in sociophysics”, Internat. J. Modern Phys. C, 16:04 (2005), 515–531
- L. Ambrosio, G. Crippa, “Continuity equations and ODE flows with non-smooth velocity”, Proc. Roy. Soc. Edinburgh Sect. A, 144:6 (2014), 1191–1244
- B. Bonnet, H. Frankowska, “Viability and exponentially stable trajectories for differential inclusions in Wasserstein spaces”, 2022 IEEE 61st conference on decision and control (CDC) (Cancun, 2022), IEEE, 2022, 5086–5091
- C. D'Apice, R. Manzo, B. Piccoli, V. Vespri, “Lyapunov stability for measure differential equations”, Math. Control Relat. Fields, 14:4 (2024), 1391–1407
- А. М. Ляпунов, Общая задача об устойчивости движения, Дисс. … докт. матем., Имп. Моск. ун-т, М., 1892
- А. М. Ляпунов, “К вопросу об устойчивости движения”, Сообщ. Харьк. матем. о-ва. (2), 3:1 (1893), 265–272
- И. Г. Малкин, Теория устойчивости движения, Гостехиздат, М.–Л., 1952, 432 с.
- Н. Н. Красовский, Некоторые задачи теории устойчивости движения, Физматгиз, М., 1959, 211 с.
- C. Seis, “Optimal stability estimates for continuity equations”, Proc. Roy. Soc. Edinburgh Sect. A, 148:6 (2018), 1279–1296
- I. Karafyllis, M. Krstic, “Stability results for the continuity equation”, Systems Control Lett., 135 (2020), 104594, 9 pp.
- D. Shevitz, B. Paden, “Lyapunov stability theory of nonsmooth systems”, IEEE Trans. Automat. Control, 39:9 (1994), 1910–1914
- C. Calcaterra, Dynamics and geometry on metric spaces: flows and foliations, Preprint at ResearchGate: 359061756, 2019, xvi+471 pp.
- Yu. Orlov, Nonsmooth Lyapunov analysis in finite and infinite dimensions, Comm. Control Engrg. Ser., Springer, Cham, 2020, xix+340 pp.
- A. N. Michel, Ling Hou, Ling Liu, Stability of dynamical systems. On the role of monotonic and non-monotonic Lyapunov functions, Systems Control Found. Appl., 2nd ed., Birkhäuser/Springer, Cham, 2015, xvii+653 pp.
- F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Grad. Texts in Math., 178, Springer-Verlag, New York, 1998, xiv+276 pp.
- J.-P. Aubin, A. M. Bayen, P. Saint-Pierre, Viability theory. New directions, 2nd ed., Springer, Heidelberg, 2011, xxii+803 pp.
- P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The master equation and the convergence problem in mean field games, Ann. of Math. Stud., 201, Princeton Univ. Press, Princeton, NJ, 2019, x+212 pp.
- L. Ambrosio, N. Gigli, G. Savare, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005, viii+333 pp.
- F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp.
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- Yu. V. Averboukh, “A mean field type differential inclusion with upper semicontinuous right-hand side”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 32:4 (2022), 489–501
- W. Gangbo, A. Tudorascu, “On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi”, J. Math. Pures Appl. (9), 125 (2019), 119–174
- Yu. Averboukh, D. Khlopin, Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach
- В. В. Козлов, Тепловое равновесие по Гиббсу и Пуанкаре, М.–Ижевск, Ин-т компьютерных исследований, 2002, 320 с.
Supplementary files
