Geodesically equivalent metrics, Nijenhuis operators, geodesic flows, symmetries, conservation laws
- Authors: Bolsinov A.V.1,2
-
Affiliations:
- Department of Mathematical Sciences, Loughborough University, Loughborough, UK
- Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
- Issue: Vol 216, No 5 (2025)
- Pages: 5-32
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306703
- DOI: https://doi.org/10.4213/sm10220
- ID: 306703
Cite item
Abstract
We show how concepts, methods and results from Nijenhuis geometry can be used to study geodesically equivalent metrics. We propose a new method of the presentation and proof of many facts in the classical theory of geodesically equivalent metrics and develop methods for the further development of this theory.
About the authors
Aleksei Viktorovich Bolsinov
Department of Mathematical Sciences, Loughborough University, Loughborough, UK; Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
Author for correspondence.
Email: A.Bolsinov@lboro.ac.uk
Doctor of physico-mathematical sciences, Professor
References
- Г. В. Белозеров, “Геодезический поток на пересечении нескольких софокусных квадрик в $mathbb{R}^n$”, Матем. сб., 214:7 (2023), 3–26
- E. Beltrami, “Risoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette”, Ann. Mat. Pura Appl. (2), 1865, no. 7, 185–204
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Applications of Nijenhuis geometry V: geodesic equivalence and finite-dimensional reductions of integrable quasilinear systems”, J. Nonlinear Sci., 34:2 (2024), 33, 18 pp.
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry”, Adv. Math., 394 (2022), 108001, 52 pp.
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry III: $mathrm{gl}$-regular Nijenhuis operators”, Rev. Mat. Iberoam., 40:1 (2024), 155–188
- A. V. Bolsinov, A. Yu. Konyaev, V. S. Matveev, “Nijenhuis geometry IV: conservation laws, symmetries and integration of certain non-diagonalisable systems of hydrodynamic type in quadratures”, Nonlinearity, 37:10 (2024), 105003, 27 pp.
- A. V. Bolsinov, V. S. Matveev, “Geometrical interpretation of Benenti systems”, J. Geom. Phys., 44:4 (2003), 489–506
- A. V. Bolsinov, V. S. Matveev, “Local normal forms for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 367:9 (2015), 6719–6749
- A. V. Bolsinov, V. S. Matveev, “Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics”, Trans. Amer. Math. Soc., 363:8 (2011), 4081–4107
- А. В. Болсинов, В. С. Матвеев, А. Т. Фоменко, “Двумерные римановы метрики с интегрируемым геодезическим потоком. Локальная и глобальная геометрия”, Матем. сб., 189:10 (1998), 5–32
- A. V. Bolsinov, V. S. Matveev, G. Pucacco, “Normal forms for pseudo-Riemannian 2-dimensional metrics whose geodesic flows admit integrals quadratic in momenta”, J. Geom. Phys., 59:7 (2009), 1048–1062
- C. Boubel, “On the algebra of parallel endomorphisms of a pseudo-Riemannian metric”, J. Differential Geom., 99:1 (2015), 77–123
- G. Darboux, Leçons sur la theorie generale des surfaces, v. III, Gauthier-Villars et Fils, Paris, 1894
- U. Dini, “Sopra un problema che si presenta nella teoria generale delle rappresentazioni geografiche di una superficie su di un'altra”, Ann. Mat. Pura Appl. (2), 3 (1869), 269–293
- P. W. Doyle, “Symmetry classes of quasilinear systems in one space variable”, J. Nonlinear Math. Phys., 1:3 (1994), 225–266
- A. R. Gover, V. S. Matveev, “Projectively related metrics, Weyl nullity and metric projectively invariant equations”, Proc. Lond. Math. Soc. (3), 114:2 (2017), 242–292
- J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 58, Indag. Math., 17 (1955), 158–162
- T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche”, Ann. Mat. Pura Appl. (2), 24 (1896), 255–300
- P. Lorenzoni, F. Magri, “A cohomological construction of integrable hierarchies of hydrodynamic type”, Int. Math. Res. Not., 2005:34 (2005), 2087–2100
- Ф. Магри, “Цепи Ленарда для классических интегрируемых систем”, ТМФ, 137:3 (2003), 424–432
- V. S. Matveev, “Geometric explanation of the Beltrami theorem”, Int. J. Geom. Methods Mod. Phys., 3:3 (2006), 623–629
- V. S. Matveev, “On projectively equivalent metrics near points of bifurcation”, Topological methods in the theory of integrable systems, Cambridge Sci. Publ., Cambridge, 2006, 215–240
- V. S. Matveev, P. Ĭ. Topalov, “Trajectory equivalence and corresponding integrals”, Regul. Chaotic Dyn., 3:2 (1998), 30–45
- A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A, 54, Indag. Math., 13 (1951), 200–212
- П. Олвер, Приложение групп Ли к дифференциальным уравнениям, Мир, М., 1989, 639 с.
- М. В. Павлов, С. И. Свинолупов, Р. А. Шарипов, “Инвариантный критерий гидродинамической интегрируемости”, Функц. анализ и его прил., 30:1 (1996), 18–29
- F. Schur, “Ueber den Zusammenhang der Räume constanten Riemann'schen Krümmungsmaasses mit den projectiven Räumen”, Math. Ann., 27:4 (1886), 537–567
- Н. C. Синюков, Геодезические отображения римановых пространств, Наука, М., 1979, 256 с.
- S. Tabachnikov, “Projectively equivalent metrics, exact transverse line fields and the geodesic flow on the ellipsoid”, Comment. Math. Helv., 74:2 (1999), 306–321
- G. Thompson, “Killing tensors in spaces of constant curvature”, J. Math. Phys., 27:11 (1986), 2693–2699
- P. Topalov, “Families of metrics geodesically equivalent to the analogs of the Poisson sphere”, J. Math. Phys., 41:11 (2000), 7510–7520
- P. Topalov, “Geodesic compatibility and integrability of geodesic flows”, J. Math. Phys., 44:2 (2003), 913–929
- P. Topalov, V. S. Matveev, “Geodesic equivalence via integrability”, Geom. Dedicata, 96 (2003), 91–115
Supplementary files
