A coupled system consisting of an evolution inclusion with maximal monotone operators and a prox-regular sweeping process
- Authors: Tolstonogov A.A.1
-
Affiliations:
- Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
- Issue: Vol 216, No 6 (2025)
- Pages: 107-137
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306716
- DOI: https://doi.org/10.4213/sm10106
- ID: 306716
Cite item
Abstract
About the authors
Alexander Alexandrovich Tolstonogov
Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk, Russia
Email: alexander.tolstonogov@gmail.com
Doctor of physico-mathematical sciences, Professor
References
- J. J. Moreau, “On unilateral constraints, friction and plasticity”, New variational techniques in mathematical physics (C.I.M.E., II Ciclo, Bressanone, 1973), C.I.M.E. Summer Sch., 63, Reprint of the 1974 original, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2011, 171–322
- J. J. Moreau, “An introduction to unilateral dynamics”, Novel approaches in civil engineering, Lect. Notes Appl. Comput. Mech., 14, Springer-Verlag, Berlin, 2004, 1–46
- J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374
- M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems. Shocks and dry friction, Progr. Nonlinear Differential Equations Appl., 9, Burkhäuser Verlag, Basel, 1993, x+179 pp.
- S. Adly, R. Cibulka, H. Massias, “Variational analysis and generalized equations in electronics. Stability and simulation issues”, Set-Valued Var. Anal., 21:2 (2013), 333–358
- B. Brogliato, L. Thibault, “Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems”, J. Convex Anal., 17:3-4 (2010), 961–990
- D. Goeleven, Complementarity and variational inequalities in electronics, Math. Anal. Appl., Academic Press, London, 2017, xv+192 pp.
- S. Adly, M. Sofonea, “Time-dependent inclusions and sweeping processes in contact mechanics”, Z. Angew. Math. Phys., 70:2 (2019), 39, 19 pp.
- F. Nacry, M. Sofonea, “A class of nonlinear inclusions and sweeping processes in solid mechanics”, Acta Appl. Math., 171 (2021), 16, 26 pp.
- Ba Khiet Le, “On a class of Lur'e dynamical systems with state-dependent set-valued feedback”, Set-Valued Var. Anal., 28:3 (2020), 537–557
- B. Brogliato, A. Tanwani, “Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness, and stability”, SIAM Rev., 62:1 (2020), 3–129
- J. Venel, “A numerical scheme for a class of sweeping processes”, Numer. Math., 118:2 (2011), 367–400
- F. Nacry, “Perturbed BV sweeping process involving prox-regular sets”, J. Nonlinear Convex Anal., 18:9 (2017), 1619–1651
- S. Adly, F. Nacry, L. Thibault, “Discontinuous sweeping process with prox-regular sets”, ESAIM Control Optim. Calc. Var., 23:4 (2017), 1293–1329
- F. Nacry, L. Thibault, “BV prox-regular sweeping process with bounded truncated variation”, Optimization, 69:7-8 (2020), 1391–1437
- A. Tolstonogov, “BV sweeping process involving prox-regular sets and a composed perturbation”, Set-Valued Var. Anal., 32:1 (2024), 2, 27 pp.
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., 5, Notas Mat., 50, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., Inc., New York, 1973, vi+183 pp.
- R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249
- R. T. Rockafellar, R. J.-B. Wets, Variational analysis, Grundlehren Math. Wiss., 317, Springer-Verlag, Berlin, 1998, xiv+733 pp.
- R. D. Bourgin, Geometric aspects of convex sets with the Radon–Nikodym property, Lecture Notes in Math., 993, Springer, Berlin, 1983, xii+474 pp.
- H. Attouch, “Familles d'operateurs maximaux monotones et mesurabilite”, Ann. Mat. Pura Appl. (4), 120 (1979), 35–111
- A. A. Vladimirov, “Nonstationary dissipative evolution equations in a Hilbert space”, Nonlinear Anal., 17:6 (1991), 499–518
- M. Benguessoum, D. Azzam-Laouir, Ch. Castaing, “On a time and state dependent maximal monotone operator coupled with a sweeping process with perturbations”, Set-Valued Var. Anal., 29:1 (2021), 191–219
- D. Azzam-Laouir, M. Benguessoum, “Multi-valued perturbations to a couple of differential inclusions governed by maximal monotone operators”, Filomat, 35:13 (2021), 4369–4380
- K. Dib, D. Azzam-Laouir, “Existence solutions for a couple of differential inclusions involving maximal monotone operators”, Appl. Anal., 102:9 (2023), 2628–2650
- S. Saïdi, “Coupled problems driven by time and state-dependent maximal monotone operators”, Numer. Algebra Control Optim., 14:3 (2024), 547–580
- F. Nacry, J. Noel, L. Thibault, “On first and second order state-dependent sweeping processes”, Pure Appl. Funct. Anal., 6:6 (2021), 1453–1493
- S. Saïdi, “Second-order evolution problems by time and state-dependent maximal monotone operators and set-valued perturbations”, Int. J. Nonlinear Anal. Appl., 14:1 (2023), 699–715
- А. А. Толстоногов, “Теоремы сравнения для эволюционных включений с максимально монотонными операторами. $L^2$-теория”, Матем. сб., 214:6 (2023), 110–135
- Ky Fan, “Fixed point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad Sci. U.S.A., 38:2 (1952), 121–126
- H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman (Advanced Publishing Program), Boston, MA, 1984, xiv+423 pp.
- Shui-Hung Hou, “On property $(Q)$ and other semicontinuity properties of multifunctions”, Pacific J. Math., 103:1 (1982), 39–56
- Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis. Theory, Kluwer Acad. Publ., Boston, MA, 2003, xvi+689 pp.
- M. Kunze, M. D. P. Monteiro Marques, “BV solutions to evolution problems with time dependent domains”, Set-Valued Anal., 5:1 (1997), 57–72
- A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203
- A. A. Tolstonogov, “Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values”, Topology Appl., 155:8 (2008), 898–905
- A. A. Tolstonogov, “Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators”, J. Math. Anal. Appl., 526:1 (2023), 127197, 29 pp.
- T. Ważewski, “Systèmes des equations et des inegalites differentielles ordinaires aux deuxièmes membres monotones et leurs applications”, Ann. Soc. Polon. Math., 23 (1950), 112–166
- А. А. Толстоногов, Дифференциальные включения в банаховом пространстве, Наука, Новосибирск, 1986, 296 с.
Supplementary files
