Boyarsky-Meyers estimate of solution to the Zaremba problem for Poisson's equation with drift

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An estimate for the increased integrability is obtained for the gradient of the solution to the Zaremba problem for Poisson's equation with lower terms in a bounded domain with Lipschitz boundary and fast alternation of Dirichlet and Neumann conditions.

About the authors

Yuriy Alexandrovich Alkhutov

Vladimir State University, Vladimir, Russia

Author for correspondence.
Email: yurij-alkhutov@yandex.ru
Doctor of physico-mathematical sciences, Professor

Gregory Aleksandrovich Chechkin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia; Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Email: chechkin@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor

References

  1. Б. В. Боярский, “Обобщенные решения системы дифференциальных уравнений первого порядка эллиптического типа с разрывными коэффициентами”, Матем. сб., 43(85):4 (1957), 451–503
  2. N. G. Meyers, “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17:3 (1963), 189–206
  3. V. V. Zhikov, “On some variational problems”, Russian J. Math. Phys., 5:1 (1997), 105–116
  4. E. Acerbi, G. Mingione, “Gradient estimates for the $p(x)$-Laplacian system”, J. Reine Angew. Math., 2005:584 (2005), 117–148
  5. L. Diening, S. Schwarzacher, “Global gradient estimates for the $p(cdot)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85
  6. G. Cimatti, G. Prodi, “Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor”, Ann. Mat. Pura Appl. (4), 152 (1988), 227–236
  7. S. D. Howison, J. F. Rodrigues, M. Shillor, “Stationary solutions to the thermistor problem”, J. Math. Anal. Appl., 174:2 (1993), 573–588
  8. С. Заремба, “Об одной смешанной задаче, относящейся к уравнению Лапласа”, УМН, 1:3-4(13-14) (1946), 125–146
  9. G. Fichera, “Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico”, Rev. Roumaine Math. Pures Appl., 9 (1964), 3–9
  10. В. Г. Мазья, “Некоторые оценки решений эллиптических уравнений второго порядка”, Докл. АН СССР, 137:5 (1961), 1057–1059
  11. Ю. А. Алхутов, Г. А. Чечкин, “Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона”, Докл. РАН. Матем., информ., проц. упр., 497 (2021), 3–6
  12. Yu. A. Alkhutov, G. A. Chechkin, “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Mecanique, 349:2 (2021), 299–304
  13. Yu. A. Alkhutov, G. A. Chechkin, V. G. Maz'ya, “Boyarsky–Meyers estimate for solutions to Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211
  14. Г. А. Чечкин, Т. П. Чечкина, “Оценка Боярского–Мейерса для дивергентных эллиптических уравнений второго порядка. Два пространственных примера”, Проблемы матем. анализа, 119, Тамара Рожковская, Новосибирск, 2022, 107–116
  15. G. A. Chechkin, “The Meyers estimates for domains perforated along the boundary”, Mathematics, 9:23 (2021), 3015, 11 pp.
  16. А. Г. Чечкина, “О задаче Зарембы для $p$-эллиптического уравнения”, Матем. сб., 214:9 (2023), 144–160
  17. М. Д. Алиев, Ю. А. Алхутов, Г. А. Чечкин, “О задаче Зарембы для линейного эллиптического уравнения второго порядка со сносом в случае предельного показателя”, Уфимск. матем. журн., 16:4 (2024), 3–13
  18. В. Г. Мазья, Пространства С. Л. Соболева, Изд-во Ленингр. ун-та, Л., 1985, 416 с.
  19. В. Г. Мазья, “О непрерывности в граничной точке решения квазилинейных эллиптических уравнений”, Вестн. Ленингр. ун-та. Сер. матем., мех., астрон., 25:13(3) (1970), 42–55
  20. F. W. Gehring, “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277
  21. M. Giaquinta, G. Modica, “Regularity results for some classes of higher order non linear elliptic systems”, J. Reine Angew. Math., 1979:311/312 (1979), 145–169
  22. И. В. Скрыпник, Методы исследования нелинейных эллиптических граничных задач, Наука, М., 1990, 448 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Alkhutov Y.A., Chechkin G.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».