Weakly monotone sets and continuous selection in asymmetric spaces
- Authors: Tsar'kov I.G.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 210, No 9 (2019)
- Pages: 129-152
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133290
- DOI: https://doi.org/10.4213/sm9107
- ID: 133290
Cite item
Abstract
Keywords
About the authors
Igor' Germanovich Tsar'kov
Lomonosov Moscow State University
Email: tsar@mech.math.msu.su
Doctor of physico-mathematical sciences, Professor
References
- И. Г. Царьков, “Непрерывные выборки в несимметричных пространствах”, Матем. сб., 209:4 (2018), 95–116
- И. Г. Царьков, “О связности некоторых классов множеств в банаховых пространствах”, Матем. заметки, 40:2 (1986), 174–196
- С. В. Конягин, “О непрерывных операторах обобщенного рационального приближения”, Матем. заметки, 44:3 (1988), 404
- И. Г. Царьков, “Свойства множеств, обладающих непрерывной выборкой из оператора $P^delta$”, Матем. заметки, 48:4 (1990), 122–131
- И. Г. Царьков, “Свойства множеств, обладающих устойчивой $varepsilon$-выборкой”, Матем. заметки, 89:4 (2011), 608–613
- К. С. Рютин, “Равномерная непрерывность обобщенных рациональных приближений”, Матем. заметки, 71:2 (2002), 261–270
- Е. Д. Лившиц, “О почти наилучшем приближении кусочно-полиномиальными функциями в пространстве $C[0,1]$”, Матем. заметки, 78:4 (2005), 629–633
- Е. Д. Лившиц, “Об устойчивости оператора $varepsilon$-проекции на множество сплайнов в пространстве $C[0,1]$”, Изв. РАН. Сер. матем., 67:1 (2003), 99–130
- E. D. Livshits, “Continuous selections of operators of almost best approximation by splines in the space $L_p[0,1]$. I”, Russ. J. Math. Phys., 12:2 (2005), 215–218
- К. С. Рютин, “Непрерывность операторов обобщенного рационального приближения в пространстве $L_1[0;1]$”, Матем. заметки, 73:1 (2003), 148–153
- А. Р. Алимов, И. Г. Царьков, “Связность и другие геометрические свойства солнц и чебышeвских множеств”, Фундамент. и прикл. матем., 19:4 (2014), 21–91
- А. Р. Алимов, “Монотонная линейная связность чебышeвских множеств в пространстве $C(Q)$”, Матем. сб., 197:9 (2006), 3–18
- А. Р. Алимов, И. Г. Царьков, “Связность и солнечность в задачах наилучшего и почти наилучшего приближения”, УМН, 71:1(427) (2016), 3–84
- И. Г. Царьков, “Непрерывная $varepsilon$-выборка”, Матем. сб., 207:2 (2016), 123–142
- А. Р. Алимов, “Монотонная линейная связность и солнечность связных по Менгеру множеств в банаховых пространствах”, Изв. РАН. Сер. матем., 78:4 (2014), 3–18
- И. Г. Царьков, “Локальная и глобальная непрерывная $varepsilon$-выборка”, Изв. РАН. Сер. матем., 80:2 (2016), 165–184
- И. Г. Царьков, “Непрерывные выборки из множества ближайших и почти ближайших точек”, Докл. РАН, 475:4 (2017), 373–376
- И. Г. Царьков, “Непрерывная выборка из многозначных отображений”, Изв. РАН. Сер. матем., 81:3 (2017), 189–216
- И. Г. Царьков, “Множества, обладающие непрерывной выборкой из оператора почти наилучшего приближения”, Современные проблемы математики и механики, 9, № 2, Изд-во Моск. ун-та, М., 2014, 54–58
- И. Г. Царьков, “Некоторые приложения геометрической теории приближения”, Дифференциальные уравнения. Математический анализ, Итоги науки и техн. Сер. Соврем. матем. и ее прил. Темат. обз., 143, ВИНИТИ РАН, М., 2017, 63–80
- A. L. Brown, “On the connectedness properties of suns in finite dimensional spaces”, Functional analysis and optimization (Canberra, 1988), Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988, 1–15
- E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382
- И. Г. Царьков, “Непрерывные выборки из операторов метрической проекции и их обобщений”, Изв. РАН. Сер. матем., 82:4 (2018), 199–224
Supplementary files
