Some lower bounds for optimal sampling recovery of functions with mixed smoothness
- Autores: Gasnikov A.V.1,2,3, Temlyakov V.N.4,2,5,6
-
Afiliações:
- Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Innopolis University, Innopolis, Russia
- University of South Carolina, Columbia, SC, USA
- Lomonosov Moscow State University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
- Edição: Volume 216, Nº 11 (2025)
- Páginas: 90-107
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/351336
- DOI: https://doi.org/10.4213/sm10250
- ID: 351336
Citar
Resumo
Palavras-chave
Sobre autores
Alexander Gasnikov
Ivannikov Institute for System Programming of the Russian Academy of Science, Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Innopolis University, Innopolis, Russia
Email: gasnikov@yandex.ru
ORCID ID: 0000-0002-7386-039X
Scopus Author ID: 15762551000
Researcher ID: L-6371-2013
Doctor of physico-mathematical sciences, Associate professor
Vladimir Temlyakov
University of South Carolina, Columbia, SC, USA; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Email: temlyakovv@gmail.com
Doctor of physico-mathematical sciences, Professor
Bibliografia
- M. Dolbeault, D. Krieg, M. Ullrich, “A sharp upper bound for sampling numbers in $L_2$”, Appl. Comput. Harmon. Anal., 63 (2023), 113–134
- F. Dai, V. Temlyakov, Universal discretization and sparse sampling recovery
- F. Dai, V. Temlyakov, “Random points are good for universal discretization”, J. Math. Anal. Appl., 529:1 (2024), 127570, 28 pp.
- F. Dai, V. Temlyakov, Lebesgue-type inequalities in sparse sampling recovery
- D. Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
- T. Jahn, T. Ullrich, F. Voigtlaender, “Sampling numbers of smoothness classes via $ell^1$-minimization”, J. Complexity, 79 (2023), 101786, 35 pp.
- E. D. Kosov, V. N. Temlyakov, Bounds for the sampling discretization error and their applications to universal sampling discretization
- D. Krieg, M. Ullrich, “Function values are enough for $L_2$-approximation”, Found. Comput. Math., 21:4 (2021), 1141–1151
- D. Krieg, M. Ullrich, “Function values are enough for $L_2$-approximation: Part II”, J. Complexity, 66 (2021), 101569, 14 pp.
- N. Nagel, M. Schäfer, T. Ullrich, “A new upper bound for sampling numbers”, Found. Comput. Math., 22:2 (2022), 445–468
- V. N. Temlyakov, “On approximate recovery of functions with bounded mixed derivative”, J. Complexity, 9:1 (1993), 41–59
- V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
- V. Temlyakov, “On optimal recovery in $L_2$”, J. Complexity, 65 (2021), 101545, 11 pp.
- V. Temlyakov, Sparse sampling recovery by greedy algorithms
- V. Temlyakov, Sparse sampling recovery in integral norms on some function classes
- V. Temlyakov, T. Ullrich, “Bounds on Kolmogorov widths and sampling recovery for classes with small mixed smoothness”, J. Complexity, 67 (2021), 101575, 19 pp.
- J. F. Traub, G. W. Wasilkowski, H. Wozniakowski, Information-based complexity, Comput. Sci. Sci. Comput., Academic Press, Inc., Boston, MA, 1988, xiv+523 pp.
Arquivos suplementares

