Finiteness theorems for generalized Jacobians with nontrivial torsion
- Autores: Platonov V.P.1,2, Zhgoon V.S.3,1,4, Fedorov G.V.5,1
-
Afiliações:
- Scientific Research Institute for System Analysis of the National Research Centre "Kurchatov Institute", Moscow, Russia
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- National Research University Higher School of Economics, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Edição: Volume 216, Nº 4 (2025)
- Páginas: 113-131
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306699
- DOI: https://doi.org/10.4213/sm10142
- ID: 306699
Citar
Resumo
Consider a curve $\mathcal C$ defined over an algebraic number field $k$. This work is concerned with the number of generalized Jacobians $J_{\mathfrak{m}}$ of $\mathcal C$ associated with moduli $\mathfrak{m}$ defined over $k$ such that a fixed class of finite order in the Jacobian $J$ of $\mathcal C$ is lifted to a torsion class in the generalized Jacobian $J_{\mathfrak{m}}$. On the one hand it is shown that there are infinitely many generalized Jacobians with the above property, and on the other hand, under some additional constraints on the support of $\mathfrak{m}$ or the structure of $J_{\mathfrak{m}}$, it is shown that the set of generalized Jacobians of this type is finite. In addition, it is proved that there are finitely many generalized Jacobians which have a lift of two given divisors to classes of finite orders in $J_{\mathfrak{m}}$. These results are applied to the problem of the periodicity of continued fractions in the field of formal power series $k((1/x))$ constructed for special elements of the function field $k(\widetilde{\mathcal{C}})$ of a hyperelliptic curve $\widetilde{\mathcal{C}}\colon y^2=f(x)$. In particular, it is shown that for each $n \in \mathbb N$ there is a finite number of monic polynomials $\omega(x) \in k[x]$ of degree at most $n$ such that the element $\omega(x) \sqrt{f(x)}$ has a periodic expansion in a continued fraction. Bibliography: 14 titles.
Palavras-chave
Sobre autores
Vladimir Platonov
Scientific Research Institute for System Analysis of the National Research Centre "Kurchatov Institute", Moscow, Russia; Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Autor responsável pela correspondência
Email: platonov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor
Vladimir Zhgoon
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia; Scientific Research Institute for System Analysis of the National Research Centre "Kurchatov Institute", Moscow, Russia; National Research University Higher School of Economics, Moscow, Russia
Email: zhgoon@mail.ru
Candidate of physico-mathematical sciences, no status
Gleb Fedorov
Sirius University of Science and Technology, Sochi, Russia; Scientific Research Institute for System Analysis of the National Research Centre "Kurchatov Institute", Moscow, Russia
Email: fedorov.gv@talantiuspeh.ru
Candidate of physico-mathematical sciences, Associate professor
Bibliografia
- В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38
- В. П. Платонов, В. С. Жгун, Г. В. Федоров, “Непрерывные дроби в гиперэллиптических полях и представление Мамфорда”, Докл. РАН, 471:6 (2016), 640–644
- W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166
- В. П. Платонов, Г. В. Федоров, “О проблеме периодичности непрерывных дробей в гиперэллиптических полях”, Матем. сб., 209:4 (2018), 54–94
- Ж. Серр, Алгебраические группы и поля классов, Мир, М., 1968, 285 с.
- U. Zannier, “Hyperelliptic continued fractions and generalized Jacobians”, Amer. J. Math., 141:1 (2019), 1–40
- В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О конечности множества обобщенных якобианов с нетривиальным кручением над полями алгебраических чисел”, Докл. РАН. Матем., информ., проц. упр., 513 (2023), 66–70
- С. Ленг, Алгебраические числа, Мир, М., 1966, 225 с.
- J.-P. Serre, Local fields, Transl. from the French, Grad. Texts in Math., 67, Springer, New York–Berlin, 2013, viii+241 pp.
- Г. В. Федоров, “О длине периода функциональной непрерывной дроби над числовым полем”, Докл. РАН. Матем., информ., проц. упр., 495 (2020), 78–83
- В. П. Платонов, Г. В. Федоров, “О проблеме классификации многочленов $f$ с периодическим разложением $sqrt{f}$ в непрерывную дробь в гиперэллиптических полях”, Изв. РАН. Сер. матем., 85:5 (2021), 152–189
- В. П. Платонов, В. С. Жгун, Г. В. Федоров, “О периодичности непрерывных дробей в гиперэллиптических полях над квадратичным полем констант”, Докл. РАН, 482:2 (2018), 137–141
- В. П. Платонов, М. М. Петрунин, В. С. Жгун, Ю. Н. Штейников, “О конечности гиперэллиптических полей со специальными свойствами и периодическим разложением $sqrt{f}$ ”, Докл. РАН, 483:6 (2018), 609–613
- Г. В. Федоров, “О проблеме описания элементов эллиптических полей с периодическим разложением в непрерывную дробь над квадратичными полями констант”, Докл. РАН. Матем., информ., проц. упр., 505 (2022), 56–62
Arquivos suplementares
