Polynomials of complete spatial graphs and Jones polynomial of the related links
- Autores: Vesnin A.Y.1,2,3, Oshmarina O.A.2,3
-
Afiliações:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- Tomsk State University, Tomsk, Russia
- Edição: Volume 216, Nº 5 (2025)
- Páginas: 33-63
- Seção: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306704
- DOI: https://doi.org/10.4213/sm10167
- ID: 306704
Citar
Resumo
A spatial $K_n$-graph is an embedding of a complete graph $K_n$ with $n$ vertices in a $3$-sphere $S^3$. Knots in a spatial $K_n$-graph corresponding to cycles of $K_n$ are called constituent knots. We consider the case $n=4$. The boundary of the orientable band surface constructed from a spatial $K_4$-graph and having the zero Seifert form is a $4$-component link, which is referred to as the associated link. We obtain formulae relating the normalized Yamada and Jaeger polynomials of spatial $K_4$-graphs, their $\theta$-subgraphs and cyclic subgraphs with the Jones polynomials of constituent knots and related links.
Palavras-chave
Sobre autores
Andrei Vesnin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Tomsk State University, Tomsk, Russia
Autor responsável pela correspondência
Email: vesnin@math.nsc.ru
Doctor of physico-mathematical sciences, Senior Researcher
Olga Oshmarina
Novosibirsk State University, Novosibirsk, Russia; Tomsk State University, Tomsk, Russia
Email: o.oshmarina@g.nsu.ru
Bibliografia
- S. Yamada, “An invariant of spatial graphs”, J. Graph Theory, 13:5 (1989), 537–551
- J. Murakami, “The Yamada polynomial of spacial graphs and knit algebras”, Comm. Math. Phys., 155:3 (1993), 511–522
- T. Motohashi, Y. Ohyama, K. Taniyama, “Yamada polynomial and crossing number of spatial graphs”, Rev. Mat. Univ. Complut. Madrid, 7:2 (1994), 247–277
- Miaowang Li, Fengchun Lei, Fengling Li, A. Vesnin, “The Yamada polynomial of spatial graphs obtained by edge replacements”, J. Knot Theory Ramifications, 27:9 (2018), 1842004, 19 pp.
- Мяован Ли, Фэнчунь Лэй, Фэнлин Ли, А. Ю. Веснин, “Плотность множества корней полинома Ямады пространственных графов”, Алгебраическая топология, комбинаторика и математическая физика, Сборник статей. К 75-летию со дня рождения члена-корреспондента РАН Виктора Матвеевича Бухштабера, Труды МИАН, 305, МИАН, М., 2019, 148–161
- S. Yoshinaga, “An invariant of spatial graphs associated with $U_q(operatorname{sl}(2, mathbf C))$”, Kobe J. Math., 8:1 (1991), 25–40
- A. A. Dobrynin, A. Yu. Vesnin, “On the Yoshinaga polynomial of spatial graphs”, Kobe J. Math., 20:1-2 (2003), 31–37
- Y. Yokota, “Topological invariants of graphs in 3-space”, Topology, 35:1 (1996), 77–87
- Qingying Deng, Xian'an Jin, L. H. Kauffman, “The generalized Yamada polynomials of virtual spatial graphs”, Topology Appl., 256 (2019), 136–158
- S. R. T. Peddada, N. M. Dunfield, L. E. Zeidner, Z. R. Givans, K. A. James, J. T. Allison, “Enumeration and identification of unique 3D spatial topologies of interconnected engineering systems using spatial graphs”, J. Mech. Design, 145:10 (2023), 101708, 16 pp.
- L. Kauffman, J. Simon, K. Wolcott, Peiyi Zhao, “Invariants of theta-curves and other graphs in 3-space”, Topology Appl., 49:3 (1993), 193–216
- K. Wolcott, “The knotting of theta-curves and other graphs in $S^3$”, Geometry and topology. Manifolds, varieties, and knots (Athens, GA, 1985), Lecture Notes in Pure and Appl. Math., 105, Marcel Dekker, Inc., New York, 1987, 325–346
- J. Simon, “A topological approach to the stereochemistry on nonrigid molecules”, Graph theory and topology in chemistry (Athens, GA, 1987), Stud. Phys. Theoret. Chem., 51, Elsevier Sci. Publ., Amsterdam, 1987, 43–75
- А. Ю. Веснин, А. А. Добрынин, “Полином Ямады для графов, заузленно вложенных в трехмерное пространство”, Теория графов и ее применения, Вычислительные системы, 155, ИМ СО РАН, Новосибирск, 1996, 37–86
- H. Moriuchi, “An enumeration of theta-curves with up to seven crossings”, J. Knot Theory Ramifications, 18:2 (2009), 167–197
- Youngsik Huh, “Yamada polynomial and associated link of $theta$-curves”, Discrete Math., 347:1 (2024), 113684, 11 pp.
- L. H. Kauffman, “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710
- J. H. Conway, C. McA. Gordon, “Knots and links in spatial graphs”, J. Graph Theory, 7:4 (1983), 445–453
- M. Shimabara, “Knots in certain spatial graphs”, Tokyo J. Math., 11:2 (1988), 405–413
- M. Yamamoto, “Knots in spatial embeddings of the complete graph on four vertices”, Topology Appl., 36:3 (1990), 291–298
- V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N.S.), 12:1 (1985), 103–111
- L. H. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407
- F. Jaeger, “On some graph invariants related to the Kauffman polynomial”, Progress in knot theory and related topics, Travaux en Cours, 56, Hermann, Paris, 1997, 69–82
- L. H. Kauffman, “An invariant of regular isotopy”, Trans. Amer. Math. Soc., 318:2 (1990), 417–471
- Youngsik Huh, Gyo Taek Jin, “$theta$-curve polynomials and finite-type invariants”, J. Knot Theory Ramifications, 11:4 (2002), 555–564
Arquivos suplementares
