Необходимые и достаточные условия сопряженности регулярных гомеоморфизмов Смейла

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается класс регулярных гомеоморфизмов Смейла, неблуждающее множество которых состоит из конечного числа периодических орбит, имеющих гиперболический тип, на замкнутых топологических многообразиях. Этот класс содержит диффеоморфизмы Морса–Смейла на замкнутых гладких многообразиях. Для регулярных гомеоморфизмов Смейла приводятся необходимые и достаточные условия сопряженности.Библиография: 26 названий.

Об авторах

Евгений Викторович Жужома

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Email: zhuzhoma@mail.ru
доктор физико-математических наук, профессор

Владислав Сергеевич Медведев

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Email: medvedev@uic.nnov.ru
кандидат физико-математических наук

Список литературы

  1. Д. В. Аносов, “Гладкие динамические системы. Гл. 1. Исходные понятия”, Динамические системы – 1, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 1, ВИНИТИ, М., 1985, 156–178
  2. Д. В. Аносов, Е. В. Жужома, “Нелокальное асимптотическое поведение кривых и слоев ламинаций на универсальных накрывающих”, Тр. МИАН, 249, Наука, МАИК “Наука/Интерпериодика”, М., 2005, 3–239
  3. С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
  4. А. Пуанкаре, “Четвертый мемуар”, О кривых, определяемых дифференциальными уравнениями, Серия “Классики естествознания”, ОГИЗ, М.–Л., 1947, 192–266
  5. I. Nikolaev, E. Zhuzhoma, Flows on 2-dimensional manifolds. An overview, Lecture Notes in Math., 1705, Springer-Verlag, Berlin, 1999, xx+294 pp.
  6. В. З. Гринес, Е. В. Жужома, “О грубых диффеоморфизмах с растягивающимися аттракторами или сжимающимися репеллерами коразмерности один”, Докл. РАН, 374:6 (2000), 735–737
  7. В. З. Гринес, Е. В. Жужома, В. С. Медведев, “Новые соотношения для систем Морса–Смейла с тривиально вложенными одномерными сепаратрисами”, Матем. сб., 194:7 (2003), 25–56
  8. Е. В. Жужома, В. С. Медведев, “Непрерывные потоки Морса–Смейла с тремя состояниями равновесия”, Матем. сб., 207:5 (2016), 69–92
  9. Е. В. Жужома, В. С. Медведев, “Сопряженность диффеоморфизмов Морса–Смейла с тремя неблуждающими точками”, Матем. заметки, 104:5 (2018), 775–780
  10. J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405
  11. А. Андронов, Л. С. Понтрягин, “Грубые системы”, Докл. АН СССР, 14:5 (1937), 247–250
  12. Д. В. Аносов, “Грубость геодезических потоков на компактных римановых многообразиях отрицательной кривизны”, Докл. АН СССР, 145:4 (1962), 707–709
  13. Д. В. Аносов, “Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны”, Тр. МИАН СССР, 90, Наука, М., 1967, 3–210
  14. В. З. Гринес, “Топологическая классификация диффеомоpфизмов Моpса–Смейла с конечным множеством гетеpоклинических тpаектоpий на повеpхностях”, Матем. заметки, 54:3 (1993), 3–17
  15. Е. В. Жужома, В. C. Медведев, “Глобальная динамика систем Морса–Смейла”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 261, МАИК “Наука/Интерпериодика”, М., 2008, 115–139
  16. В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116
  17. C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
  18. Х. Бонатти, В. З. Гринес, В. C. Медведев, Е. Пеку, “О топологической классификации градиентноподобных диффеоморфизмов без гетероклинических кривых на трехмерных многообразиях”, Докл. РАН, 377:2 (2001), 151–155
  19. C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391
  20. В. З. Гринес, О. В. Починка, Введение в топологическую классификацию диффеоморфизмов на многообразиях размерности два и три, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2011, 424 с.
  21. Д. М. Гробман, “Гомеоморфизм систем дифференциальных уравнений”, Докл. АН СССР, 128:5 (1959), 880–881
  22. Д. М. Гробман, “Топологическая классификация окрестностей особой точки в $n$-мерном пространстве”, Матем. сб., 56(98):1 (1962), 77–94
  23. P. Hartman, “On the local linearization of differential equations”, Proc. Amer. Math. Soc., 14:4 (1963), 568–573
  24. M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp.
  25. J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404
  26. S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Жужома Е.В., Медведев В.С., 2021

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).