Необходимые и достаточные условия сопряженности регулярных гомеоморфизмов Смейла
- Авторы: Жужома Е.В.1, Медведев В.С.1
-
Учреждения:
- Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде
- Выпуск: Том 212, № 1 (2021)
- Страницы: 63-77
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/133371
- DOI: https://doi.org/10.4213/sm9244
- ID: 133371
Цитировать
Аннотация
Рассматривается класс регулярных гомеоморфизмов Смейла, неблуждающее множество которых состоит из конечного числа периодических орбит, имеющих гиперболический тип, на замкнутых топологических многообразиях. Этот класс содержит диффеоморфизмы Морса–Смейла на замкнутых гладких многообразиях. Для регулярных гомеоморфизмов Смейла приводятся необходимые и достаточные условия сопряженности.Библиография: 26 названий.
Ключевые слова
Об авторах
Евгений Викторович Жужома
Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде
Email: zhuzhoma@mail.ru
доктор физико-математических наук, профессор
Владислав Сергеевич Медведев
Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде
Email: medvedev@uic.nnov.ru
кандидат физико-математических наук
Список литературы
- Д. В. Аносов, “Гладкие динамические системы. Гл. 1. Исходные понятия”, Динамические системы – 1, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 1, ВИНИТИ, М., 1985, 156–178
- Д. В. Аносов, Е. В. Жужома, “Нелокальное асимптотическое поведение кривых и слоев ламинаций на универсальных накрывающих”, Тр. МИАН, 249, Наука, МАИК “Наука/Интерпериодика”, М., 2005, 3–239
- С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
- А. Пуанкаре, “Четвертый мемуар”, О кривых, определяемых дифференциальными уравнениями, Серия “Классики естествознания”, ОГИЗ, М.–Л., 1947, 192–266
- I. Nikolaev, E. Zhuzhoma, Flows on 2-dimensional manifolds. An overview, Lecture Notes in Math., 1705, Springer-Verlag, Berlin, 1999, xx+294 pp.
- В. З. Гринес, Е. В. Жужома, “О грубых диффеоморфизмах с растягивающимися аттракторами или сжимающимися репеллерами коразмерности один”, Докл. РАН, 374:6 (2000), 735–737
- В. З. Гринес, Е. В. Жужома, В. С. Медведев, “Новые соотношения для систем Морса–Смейла с тривиально вложенными одномерными сепаратрисами”, Матем. сб., 194:7 (2003), 25–56
- Е. В. Жужома, В. С. Медведев, “Непрерывные потоки Морса–Смейла с тремя состояниями равновесия”, Матем. сб., 207:5 (2016), 69–92
- Е. В. Жужома, В. С. Медведев, “Сопряженность диффеоморфизмов Морса–Смейла с тремя неблуждающими точками”, Матем. заметки, 104:5 (2018), 775–780
- J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. of Math. (2), 64:2 (1956), 399–405
- А. Андронов, Л. С. Понтрягин, “Грубые системы”, Докл. АН СССР, 14:5 (1937), 247–250
- Д. В. Аносов, “Грубость геодезических потоков на компактных римановых многообразиях отрицательной кривизны”, Докл. АН СССР, 145:4 (1962), 707–709
- Д. В. Аносов, “Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны”, Тр. МИАН СССР, 90, Наука, М., 1967, 3–210
- В. З. Гринес, “Топологическая классификация диффеомоpфизмов Моpса–Смейла с конечным множеством гетеpоклинических тpаектоpий на повеpхностях”, Матем. заметки, 54:3 (1993), 3–17
- Е. В. Жужома, В. C. Медведев, “Глобальная динамика систем Морса–Смейла”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 261, МАИК “Наука/Интерпериодика”, М., 2008, 115–139
- В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, О. В. Починка, “Классификация систем Морса–Смейла и топологическая структура несущих многообразий”, УМН, 74:1(445) (2019), 41–116
- C. Bonatti, V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602
- Х. Бонатти, В. З. Гринес, В. C. Медведев, Е. Пеку, “О топологической классификации градиентноподобных диффеоморфизмов без гетероклинических кривых на трехмерных многообразиях”, Докл. РАН, 377:2 (2001), 151–155
- C. Bonatti, V. Grines, V. Medvedev, E. Pecou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391
- В. З. Гринес, О. В. Починка, Введение в топологическую классификацию диффеоморфизмов на многообразиях размерности два и три, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2011, 424 с.
- Д. М. Гробман, “Гомеоморфизм систем дифференциальных уравнений”, Докл. АН СССР, 128:5 (1959), 880–881
- Д. М. Гробман, “Топологическая классификация окрестностей особой точки в $n$-мерном пространстве”, Матем. сб., 56(98):1 (1962), 77–94
- P. Hartman, “On the local linearization of differential equations”, Proc. Amer. Math. Soc., 14:4 (1963), 568–573
- M. W. Hirsch, C. C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977, ii+149 pp.
- J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404
- S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49
Дополнительные файлы

