Слабые полуправильные решения задачи Дирихле для квазилинейных эллиптических уравнений в дивергентной форме с разрывными слабыми нелинейностями
- Авторы: Павленко В.Н.1, Потапов Д.К.2
-
Учреждения:
- Челябинский государственный университет
- Санкт-Петербургский государственный университет
- Выпуск: Том 216, № 6 (2025)
- Страницы: 77-93
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/306714
- DOI: https://doi.org/10.4213/sm10166
- ID: 306714
Цитировать
Аннотация
В ограниченной области $N$-мерного пространства изучается однородная задача Дирихле для квазилинейного эллиптического уравнения в дивергентной форме с разрывной слабой нелинейностью степенного роста на бесконечности. Вариационным методом, базирующимся на понятии квазипотенциального оператора, получена теорема существования слабого полуправильного решения исследуемой задачи. Полуправильность решения означает, что его значения почти всюду в области, в которой рассматривается краевая задача, являются точками непрерывности слабой нелинейности по фазовой переменной. Далее в уравнение вводится положительный параметр как множитель при слабой нелинейности и изучается вопрос о существовании ненулевых слабых полуправильных решений полученной краевой задачи. При этом предполагается существование тривиального решения для всех значений параметра. Установлена теорема о существовании ненулевого слабого полуправильного решения при достаточно больших значениях параметра. Библиография: 19 названий.
Об авторах
Вячеслав Николаевич Павленко
Челябинский государственный университет
Автор, ответственный за переписку.
Email: pavlenko@csu.ru
доктор физико-математических наук, профессор
Дмитрий Константинович Потапов
Санкт-Петербургский государственный университет
Email: d.potapov@spbu.ru
кандидат физико-математических наук, доцент
Список литературы
- А. Д. Ляшко, М. М. Карчевский, “О решении некоторых нелинейных задач теории фильтрации”, Изв. вузов. Матем., 1975, № 6, 73–81
- Г. Н. Яковлев, “Свойства решений одного класса квазилинейных эллиптических уравнений второго порядка в дивергентной форме”, Исследования по теории дифференцируемых функций многих переменных и ее приложениям. V, Сборник работ под редакцией С. М. Никольского, Тр. МИАН СССР, 131, 1974, 232–242
- В. Н. Павленко, Д. К. Потапов, “О существовании луча собственных значений для уравнений с разрывными операторами”, Сиб. матем. журн., 42:4 (2001), 911–919
- В. Н. Павленко, Д. К. Потапов, “Вариационный метод для эллиптических систем с разрывными нелинейностями”, Матем. сб., 212:5 (2021), 133–152
- В. Н. Павленко, Д. К. Потапов, “Полуправильные решения эллиптических краевых задач с разрывными нелинейностями экспоненциального роста”, Матем. сб., 213:7 (2022), 121–138
- В. Н. Павленко, Д. К. Потапов, “Полуправильные решения интегральных уравнений с разрывными нелинейностями”, Матем. заметки, 116:1 (2024), 109–121
- Kung-Ching Chang, “Variational methods for non-differentiable functionals and their applications to partial differential equations”, J. Math. Anal. Appl., 80:1 (1981), 102–129
- L. Gasinski, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Ser. Math. Anal. Appl., 8, Chapman & Hall/CRC, Boca Raton, FL, 2005, xiv+775 pp.
- G. Bonanno, P. Candito, “Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities”, J. Differential Equations, 244:12 (2008), 3031–3059
- S. A. Marano, D. Motreanu, “On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems”, Nonlinear Anal., 48:1 (2002), 37–52
- А. Н. Колмогоров, С. В. Фомин, Элементы теории функций и функционального анализа, 3-е изд., Наука, М., 1972, 496 с.
- И. В. Шрагин, “Условия измеримости суперпозиций”, Докл. АН СССР, 197:2 (1971), 295–298
- J. A. Santos, P. F. S. Pontes, S. H. M. Soares, “A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities”, Calc. Var. Partial Differential Equations, 62:3 (2023), 91, 33 pp.
- В. Н. Павленко, Д. К. Потапов, “Об одном классе квазилинейных уравнений эллиптического типа с разрывными нелинейностями”, Изв. РАН. Сер. матем., 86:6 (2022), 143–160
- М. М. Вайнберг, Вариационный метод и метод монотонных операторов в теории нелинейных уравнений, Наука, М., 1972, 416 с.
- В. Н. Павленко, “Вариационный метод для уравнений с разрывными операторами”, Вестник ЧелГУ, 1994, № 2, 87–95
- В. Н. Павленко, “Теоремы существования для эллиптических вариационных неравенств с квазипотенциальными операторами”, Дифференц. уравнения, 24:8 (1988), 1397–1402
- В. Н. Павленко, “Существование решений у нелинейных уравнений с разрывными монотонными операторами”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1973, № 6, 21–29
- Н. Данфорд, Дж. Т. Шварц, Линейные операторы, т. 2, Спектральная теория. Самосопряженные операторы в гильбертовом пространстве, Мир, М., 1966, 1063 с.
Дополнительные файлы
