Lyapunov stability of an equilibrium of the nonlocal continuity equation
- 作者: Averboukh Y.V.1, Volkov A.M.1
-
隶属关系:
- N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- 期: 卷 216, 编号 2 (2025)
- 页面: 3-31
- 栏目: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/306677
- DOI: https://doi.org/10.4213/sm10084
- ID: 306677
如何引用文章
详细
作者简介
Yurii Averboukh
N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Email: ayv@imm.uran.ru
Doctor of Science, Head Scientist Researcher
Aleksei Volkov
N. N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
Email: volkov@imm.uran.ru
without scientific degree, Scientific Employee
参考
- V. C. Boffi, G. Spiga, “Continuity equation in the study of nonlinear particle-transport evolution problems”, Phys. Rev. A, 29:2 (1984), 782–790
- M. Tucci, M. Volonteri, “Constraining supermassive black hole evolution through the continuity equation”, Astronom. and Astrophys., 600 (2017), A64, 17 pp.
- L. W. Botsford, “Optimal fishery policy for size-specific, density-dependent population models”, J. Math. Biol., 12:3 (1981), 265–293
- C. di Mario, N. Meneveau, R. Gil, P. Jaegere, P. J. de Feyter, C. J. Slager, J. R. T. C. Roelandt, P. W. Serruys, “Maximal blood flow velocity in severe coronary stenoses measured with a Doppler guidewire: limitations for the application of the continuity equation in the assessment of stenosis severity”, Am. J. Cardiol., 71:14 (1993), D54–D61
- A. Pluchino, V. Latora, A. Rapisarda, “Changing opinions in a changing world: a new perspective in sociophysics”, Internat. J. Modern Phys. C, 16:04 (2005), 515–531
- L. Ambrosio, G. Crippa, “Continuity equations and ODE flows with non-smooth velocity”, Proc. Roy. Soc. Edinburgh Sect. A, 144:6 (2014), 1191–1244
- B. Bonnet, H. Frankowska, “Viability and exponentially stable trajectories for differential inclusions in Wasserstein spaces”, 2022 IEEE 61st conference on decision and control (CDC) (Cancun, 2022), IEEE, 2022, 5086–5091
- C. D'Apice, R. Manzo, B. Piccoli, V. Vespri, “Lyapunov stability for measure differential equations”, Math. Control Relat. Fields, 14:4 (2024), 1391–1407
- А. М. Ляпунов, Общая задача об устойчивости движения, Дисс. … докт. матем., Имп. Моск. ун-т, М., 1892
- А. М. Ляпунов, “К вопросу об устойчивости движения”, Сообщ. Харьк. матем. о-ва. (2), 3:1 (1893), 265–272
- И. Г. Малкин, Теория устойчивости движения, Гостехиздат, М.–Л., 1952, 432 с.
- Н. Н. Красовский, Некоторые задачи теории устойчивости движения, Физматгиз, М., 1959, 211 с.
- C. Seis, “Optimal stability estimates for continuity equations”, Proc. Roy. Soc. Edinburgh Sect. A, 148:6 (2018), 1279–1296
- I. Karafyllis, M. Krstic, “Stability results for the continuity equation”, Systems Control Lett., 135 (2020), 104594, 9 pp.
- D. Shevitz, B. Paden, “Lyapunov stability theory of nonsmooth systems”, IEEE Trans. Automat. Control, 39:9 (1994), 1910–1914
- C. Calcaterra, Dynamics and geometry on metric spaces: flows and foliations, Preprint at ResearchGate: 359061756, 2019, xvi+471 pp.
- Yu. Orlov, Nonsmooth Lyapunov analysis in finite and infinite dimensions, Comm. Control Engrg. Ser., Springer, Cham, 2020, xix+340 pp.
- A. N. Michel, Ling Hou, Ling Liu, Stability of dynamical systems. On the role of monotonic and non-monotonic Lyapunov functions, Systems Control Found. Appl., 2nd ed., Birkhäuser/Springer, Cham, 2015, xvii+653 pp.
- F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Grad. Texts in Math., 178, Springer-Verlag, New York, 1998, xiv+276 pp.
- J.-P. Aubin, A. M. Bayen, P. Saint-Pierre, Viability theory. New directions, 2nd ed., Springer, Heidelberg, 2011, xxii+803 pp.
- P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The master equation and the convergence problem in mean field games, Ann. of Math. Stud., 201, Princeton Univ. Press, Princeton, NJ, 2019, x+212 pp.
- L. Ambrosio, N. Gigli, G. Savare, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, Birkhäuser Verlag, Basel, 2005, viii+333 pp.
- F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp.
- В. И. Богачев, Основы теории меры, т. 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 576 с.
- Yu. V. Averboukh, “A mean field type differential inclusion with upper semicontinuous right-hand side”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 32:4 (2022), 489–501
- W. Gangbo, A. Tudorascu, “On differentiability in the Wasserstein space and well-posedness for Hamilton–Jacobi”, J. Math. Pures Appl. (9), 125 (2019), 119–174
- Yu. Averboukh, D. Khlopin, Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach
- В. В. Козлов, Тепловое равновесие по Гиббсу и Пуанкаре, М.–Ижевск, Ин-т компьютерных исследований, 2002, 320 с.
补充文件
