Связанные состояния магнитных скирмионов высокого порядка и сверхпроводящего вихря Пирла

Обложка

Цитировать

Полный текст

Аннотация

Показано, что поля рассеяния сверхпроводящего вихря Пирла могут формировать связанные состояния с магнитными скирмионами высокого порядка за счет орбитальных эффектов неоднородного магнитного поля. По аналогии с недавними результатами для скирмионов с топологическим зарядом |Q| = 1 [E. S. Andriyakhina, S. Apostoloff, and I. S. Burmistrov, Pis’ma v ZhETF 116, 801 (2022)], в таких связанных состояниях центры магнитных скирмионов высокого порядка могут быть смещены относительно центра сверхпроводящего вихря на некоторое расстояние. Показано, что для простейших магнитных скирмионов высокого порядка с |Q| = 2 действующие на магнитные скирмионы высокого порядка пандеромоторные силы всегда стремятся сформировать некоаксиальные связанные состояния.

Об авторах

А. Д Федосеев

Институт физики им. Л.В.Киренского, Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”

Красноярск, Россия

М. С Шустин

Институт физики им. Л.В.Киренского, Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”; Институт теоретической физики им. Л.Д.Ландау РАН

Email: mshustin@yandex.ru
Красноярск, Россия; Черноголовка, Россия

Д. М Дзебисашвили

Институт физики им. Л.В.Киренского, Федеральный исследовательский центр “Красноярский научный центр Сибирского отделения Российской академии наук”

Красноярск, Россия

Список литературы

  1. T. H. R. Skyrme, Proc. R. Soc. Lond. Ser. A 260, 127 (1961).
  2. T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
  3. А.А. Белавин, А.М. Поляков, Письма из ЖЭТФ 22, 503 (1975).
  4. A. N. Bogdanov and D. A.Yablonsky, Sov. Phys. JETP 95, 178 (1989).
  5. B. Seng, D. Schonke, J. Yeste et al. (Collaboration), Adv. Func. Mat. 31, 2102307 (2021).
  6. L. R´ozsa, K. Palot´as, A. De´ak, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, and U. Nowak, Phys. Rev. B 95, 094423 (2017).
  7. M. Hassan, S. Koraltan, A. Ullrich, F. Bruckner, R. O. Serha, K. V. Levchenko, G. Varvaro, N. S. Kiselev, M. Heigl, C. Abert, D. Suess, and M. Albrecht, Nature Physics. 20, 615 (2024).
  8. F. Rybakov and N. Kiselev, Phys. Rev. B 99, 064437 (2019).
  9. V. M. Kuchkin, B. Barton-Singer, F. N. Rybakov, S. Blugel, B. J. Schroers, and N. Kiselev, Phys. Rev. B 102, 144422 (2020).
  10. J. Tang, Y. Wu, W. Wang, L. Kong, B. Lv, W. Wei, J. Zang, M. Tian, and H. Du, Nat. Nanotechnol. 16, 1086 (2021).
  11. L. Yang, A. S. Savchenko, F. Zheng, N. S. Kiselev, F. N. Rybakov, X. Han, S. Blu¨gel, and R. E. DuninBorkowski, Adv. Mater. 36, 2403274 (2024).
  12. D. S. Kathyat and P. Sengupta, arXiv:2405.19987 (2024).
  13. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
  14. S. S. P. Parkin and S.-H. Yang, Nat. Nanotechnol. 10, 195 (2015).
  15. C. Psaroudaki, E. Peraticos, and C. Panagopoulos, Appl. Phys. Lett. 123, 260501 (2023).
  16. A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015).
  17. R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017).
  18. M. S. Shustin, V. A. Stepanenko, and D. M. Dzebisashvili, Phys. Rev. B 107, 195428 (2023).
  19. М. С. Шустин, Д. М. Дзебисашвили, В. А. Степаненко, ФТТ 65, 1021 (2023).
  20. D. Sen and R. Chitra, Phys. Rev. B 51, 1922 (1995).
  21. O. I. Motrunich, Phys. Rev. B 73, 155115 (2006).
  22. E. S. Andriyakhina and I. S. Burmistrov, Phys. Rev. B 103, 174519 (2021).
  23. E. S. Andriyakhina, S. Apostoloff, and I. S. Burmistrov, Pis’ma v ZhETF 116, 801 (2022).
  24. S. S. Apostoloff, E. S. Andriyakhina, P. A. Vorobyev, O. A. Tretiakov, and I. S. Burmistrov, Phys. Rev. B 107, L220409 (2023).
  25. S. S. Apostoloff, E. S. Andriyakhina, and I. S. Burmistrov, Phys. Rev. B 109, 104406 (2024).
  26. A. O. Zlotnikov, M. S. Shustin, and A. D. Fedoseev, J. Sup. Nov. Magn. 34, 3053 (2021).
  27. U. Gungordu and A. A. Kovalev, J. Appl. Phys. 132, 041101 (2022).
  28. G. Yang, P. Stano, J. Klinovaja, and D. Loss, Phys. Rev. B 93, 224505 (2016).
  29. S. Rex, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 100, 064504 (2019).
  30. A. A. Abrikosov, Fundamentals of the Theory of Metals, North-Holland, Amsterdam (1988).
  31. A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka, A. N. Bogdanov, and R. Wiesendanger, New. J. Phys 18, 065003 (2016).
  32. R. M. Menezes, J. F. S. Neto, C. C. de Souza Silva, and M. V. Milosevic, Phys. Rev. B 100, 014431 (2019).
  33. X. Wang, H. Yuan, and M. X. Wang, Commun. Phys. 1, 1 (2018).
  34. M. Beg, M. Lang, and H. Fangohr, IEEE Trans. Magn. 58, 1 (2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).