First law of de Sitter thermodynamics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The de Sitter state has a special symmetry: it is homogeneous, and its curvature is constant in space. Since all the points in the de Sitter space are equivalent, this state is described by local thermodynamics. This state has the local temperature T = H/π (which is twice the Gibbons–Hawking temperature), the local entropy density, the local energy density, and also the local gravitational degrees of freedom – the scalar curvature R and the effective gravitational coupling K. On the other hand, there is the cosmological horizon, which can be also characterized by the thermodynamic relations. We consider the connections between the local thermodynamics and the thermodynamics of the cosmological horizon. In particular, there is the holographic connection between the entropy density integrated over the Hubble volume and the Gibbons–Hawking entropy of the horizon, Svolume = Shorizon = A/4G. We also consider the first law of thermodynamics in these two approaches. In the local thermodynamics, on the one hand, the first law is valid for an arbitrary volume V of de Sitter space. On the other hand, the first law is also applicable to the thermodynamics of the horizon. In both cases, the temperature is the same. This consideration is extended to the contracting de Sitter with its negative entropy, Svolume = Shorizon = −A/4G.

Sobre autores

G. Volovik

Landau Institute for Theoretical Physics

Autor responsável pela correspondência
Email: volovikgrigory@gmail.com
Chernogolovka, Russia

Bibliografia

  1. G. Gibbons and S. Hawking, Phys. Rev. D 15, 2738 (1977).
  2. T. Padmanabhan, Class. Quantum Gravity 19, 5387 (2002).
  3. I. H. Brevik, S. Nojiri, S. D. Odintsov, and L. Vanzo, Phys. Rev. D 70, 043520 (2004).
  4. T. Markkanen, Eur. Phys. J. C 78, 97 (2018).
  5. E. T. Akhmedov, K. V. Bazarov, D. V. Diakonov, and U. Moschella, Phys. Rev. D 102, 085003 (2020).
  6. D. A. Galante, PoS(Modave2022)003.
  7. B. Banihashemi, T. Jacobson, A. Svesko, and M. Visser, JHEP 01, 054 (2023).
  8. D. V. Diakonov, arXiv:2504.01942 [hep-th].
  9. P. Painlev´e, C. R. Acad. Sci. (Paris) 173, 677 (1921).
  10. A. Gullstrand, Arkiv. Mat. Astron. Fys. 16, 1 (1922).
  11. G. E. Volovik, JETP Lett. 90, 1 (2009).
  12. G. E. Volovik, arXiv:2410.04392.
  13. H. Maxfield and Z. Zahraee, JHEP 11, 093 (2022).
  14. J. Bros, H. Epstein, and U. Moschella, JCAP 0802, 003 (2008).
  15. A. M. Polyakov, Nucl. Phys. B 834, 316 (2010).
  16. G. E. Volovik, Symmetry 16, 763 (2024).
  17. G. E. Volovik, Pis’ma v ZhETF 119, 560 (2024) [G. E. Volovik, JETP Lett. 119, 564 (2024)].
  18. Ya. B. Zel’dovich, JETP 14, 1143 (1962).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).