Спектрально-селективное метазеркало на основе тримеров сферических наночастиц из дихалькогенидов переходных металлов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследованы оптические свойства тримеров, состоящих из сферических наночастиц на основе дихалькогенидов переходных металлов. Показано, что путем оптимизации состава и геометрических параметров можно добиться возбуждения сильного бианизотропного отклика в тримере из MoS2 и WS2 наночастиц. Установлено, что бианизотропные резонансные отклики для разных наночастиц тримера лежат на различных длинах волн, что позволяет скомбинировать из них неправильную метаповерхность, поддерживающую сразу две квазизапертые моды. Спроектированная метаповерхность обеспечивает высокий коэффициент отражения в спектральном диапазоне между двумя резонансами квазизапертых мод и может использоваться в качестве спектрального метазеркала с настраиваемыми характеристиками.

Об авторах

А. В. Шестериков

Владимирский государственный университет им. А. Г. и Н. Г. Столетовых (ВлГУ); Центр фотоники и двумерных материалов, Московский физико-технический институт (МФТИ)

Email: av_shesterikov@mail.ru
Владимир, Россия; Долгопрудный, Россия

М. Ю. Губин

Владимирский государственный университет им. А. Г. и Н. Г. Столетовых (ВлГУ); Центр фотоники и двумерных материалов, Московский физико-технический институт (МФТИ)

Владимир, Россия; Долгопрудный, Россия

А. В. Арсенин

Центр фотоники и двумерных материалов, Московский физико-технический институт (МФТИ)

Долгопрудный, Россия

В. С. Волков

Emerging Technologies Research Center, XPANCEO

Dubai, UAE

А. В. Прохоров

Владимирский государственный университет им. А. Г. и Н. Г. Столетовых (ВлГУ); Центр фотоники и двумерных материалов, Московский физико-технический институт (МФТИ)

Владимир, Россия; Долгопрудный, Россия

Список литературы

  1. V. R. Tuz and A. B. Evlyukhin, Nanophotonics 10, 4373 (2021).
  2. B. Meng, J. Wang, C. Zhou, and L. Huang, Opt. Lett. 47, 1549 (2022).
  3. V. R. Tuz, A. B. Evlyukhin, and V. I. Fesenko, Phys. Rev. Appl. 20, 044024 (2023).
  4. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, Phys. Rev. B 82, 045404 (2010).
  5. P. Tonkaev and Yu. Kivshar, JETP Lett. 112, 615 (2020).
  6. S. Zhang, M. Zong, Y. Liu, Z. Wu, J. Lv, and Z. Xu, Laser Photonics Rev. 18, 2301206 (2024).
  7. W. Chen, M. Li, W. Zhang, and Y. Chen, Nanophotonics 12, 1147 (2023).
  8. X. Du, L. Xiong, X. Zhao, S. Chen, J. Shi, and G. Li, Nanophotonics 11, 4843 (2022).
  9. H. Zhong, L. Song, and Y. Tian, Opt. Express 32, 39017 (2024).
  10. G. Q. Moretti, T. Weber, T. Possmayer, E. Cort´es, L. de S. Menezes, A. V. Maier, S. A. Tittl, and G. Grinblat, Nanophotonics 13, 3421 (2024).
  11. H. Duan, H. He, Y. Yi, L. Wang, Y. Zhang, X. Yan, J. Huang, and C. Zhou, Appl. Phys. Lett. 125, 211704 (2024).
  12. V. Dmitriev, S. D. S. Santos, A. B. Evlyukhin, A. S. Kupriianov, and V. R. Tuz, Phys. Rev. B 103, 165402 (2021).
  13. P. D. Terekhov, A. B. Evlyukhin, D. Redka, V. S. Volkov, A. S. Shalin, and A. Karabchevsky, Laser Photonics Rev. 14, 1900331 (2020).
  14. X. Sun, J. Sun, Z. Wang, L. Wang, F. Qiu, and L. Wen, Nano Lett. 22, 9982 (2022).
  15. J. Ding, L. Huang, W. Liu, Y. Ling, W. Wu, and H. Li, Opt. Express 28, 32721 (2020).
  16. S. Y. Wang, W. Y. Li, H. F. Kang, W. K. Zhao, Y. H. Jing, X. Li, H. Ge, Q. Wang, B. W. Jia, and N. Xu, Opt. Lett. 49, 4154 (2024).
  17. C. Gao, S. You, Y. Zhang, L. Wang, H. Duan, H. He, Q. Xie, and C. Zhou, Appl. Phys. Lett. 124, 051701 (2024).
  18. X. Gu, X. Liu, X.-F. Yan, W.-J. Du, Q. Lin, L.-L. Wang, and G.-D. Liu, Opt. Express 31, 4691 (2023).
  19. H. Zhong, L. Huang, S. Li, C. Zhou, S. You, L. Li, Y. Cheng, and A. E. Miroshnichenko, Appl. Phys. Rev. 11, 031404 (2024).
  20. Y. Zhou, M. Luo, X. Zhao, Y. Li, Q. Wang, Z. Liu, J. Guo, Z. Guo, J. Liu, and X. Wu, Nanophotonics 12, 1295 (2023).
  21. J. Liao, P. Wang, Q. Fu, S. Dai, W. Chen, D. Zhang, L. Deng, J. Li, T. Dai, and J. Yang, Opt. Express 32, 41581 (2024).
  22. S. You, M. Zhou, L. Xu, D. Chen, M. Fan, J. Huang, W. Ma, S. Luo, M. Rahmani, C. Zhou, and A. E. Miroshnichenko, Nanophotonics 12, 2051 (2023).
  23. Y. Wang, Z. Han, Y. Du, and J. Qin, Nanophotonics 10, 1295 (2021).
  24. V. -C. Su, C. H. Chu, G. Sun, and D. P. Tsai, Opt. Express 26, 13148 (2018).
  25. T. Weber, L. Ku¨hner, L. Sortino, A. Ben Mhenni, N. P. Wilson, J. Ku¨hne, J. J. Finley, S. A. Maier, and A. Tittl, Nature Mater. 22, 970 (2023).
  26. A. V. Prokhorov, S. M. Novikov, M. Yu. Gubin, R. V. Kirtaev, A. V. Shesterikov, D. V. Grudinin, M. K. Tatmyshevskiy, D. I. Yakubovsky, E. S. Zhukova, A. V. Arsenin, and V. S. Volkov, Laser Photonics Rev. 19, 2401666 (2024).
  27. L. Ignatane, R. Ignatans, J. Prikulis, A. Trausa, C. F. Tipaldi, E. Vanags, M. Zubkins, K. Smits, and A. Sarakovskis, Nanomaterials 14, 1784 (2024).
  28. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, Nat. Commun. 5, 3402 (2014).
  29. G. A. Ermolaev, D. V. Grudinin, Y. V. Stebunov et al. (Collaboration), Nat. Commun. 12, 854 (2021).
  30. G. I. Tselikov, G. A. Ermolaev, A. A. Popov et al. (Collaboration), PNAS 119, e2208830119 (2022).
  31. A. S. Chernikov, G. I. Tselikov, M. Yu. Gubin et al. (Collaboration), J. Mater. Chem. C 11, 3493 (2023).
  32. M. Yu. Gubin, A. V. Shesterikov, V. S. Volkov, and A. V. Prokhorov, JETP Lett. 117, 276 (2023).
  33. M. Yu. Gubin, A. V. Shesterikov, G. I. Tselikov, V. S. Volkov, and A. V. Prokhorov, Appl. Sci. 13, 8961 (2023).
  34. A. V. Prokhorov, P. D. Terekhov, M. Yu. Gubin, A. V. Shesterikov, X. Ni, V. R. Tuz, and A. B. Evlyukhin, ACS Photonics 9, 3869 (2022).
  35. A. B. Evlyukhin, V. R. Tuz, V. S. Volkov, and B. N. Chichkov, Phys. Rev. B 101, 205415 (2020).
  36. A. B. Evlyukhin, M. A. Poleva, A. V. Prokhorov, K. V. Baryshnikova, A. E. Miroshnichenko, and B. N. Chichkov, Laser Photonics Rev. 15, 2100206 (2021).
  37. A. V. Prokhorov, A. V. Shesterikov, M. Yu. Gubin, V. S. Volkov, and A. B. Evlyukhin, Phys. Rev. B 106, 035412 (2022).
  38. A. V. Chernyak, A. V. Barsukova, M. Yu. Shorokhov, M. Yu. Musorin, and M. Yu. Fedyanin, JETP Lett. 111, 46 (2020).
  39. D. V. Obydennov, D. A. Shilkin, D. N. Gulkin, E. V. Lyubin, D. M. Zhigunov, V. O. Bessonov, and A. A. Fedyanin, Adv. Opt. Mater. 12, 2302276 (2024).
  40. U. Zywietz, M. K. Schmidt, A. B. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. N. Chichkov, ACS Photonics 2(7), 913 (2015).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».