Soft mode behavior in transition metal doped SrTiO3 thin films on MgO substrates
- Авторы: Melentev A.V1, Zhukova E.S.1, Nekrasov B.M1, Stolyarov V.S.1, Frolov A.S.1, Savinov M.1, Bush A.A1, Kozlov V.I.1, Gorshunov B.P1, Talanov M.V1
-
Учреждения:
- Выпуск: Том 120, № 11-12 (2024)
- Страницы: 943-945
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0370-274X/article/view/275022
- DOI: https://doi.org/10.31857/S0370274X24120183
- EDN: https://elibrary.ru/DDGMAJ
- ID: 275022
Цитировать
Аннотация
The ferroelectric soft mode in polycrystalline pristine SrTiO3 and weakly doped SrTiO3:M (M=2 at% Fe, Ni, Mn, Co) thin films on (001) MgO substrates has been studied using time-domain terahertz spectroscopy. Spectra of real and imaginary parts of film permittivity were determined in the frequency range of 5–100 cm−1 at temperatures between 5 and 300K. Central frequency and dielectric contribution of the ferroelectric soft mode show Barrett-like temperature dependencies similar to crystalline SrTiO3. Large negative values of Curie temperature and enhanced positive values of Barrett quantum temperatures are discovered indicating that doped SrTiO3 thin films are farther from ferroelectric phase transition than SrTiO3 crystals.
Об авторах
A. V Melentev
Автор, ответственный за переписку.
Email: aleksandr.melentyev@phystech.edu
E. S. Zhukova
Email: aleksandr.melentyev@phystech.edu
B. M Nekrasov
Email: aleksandr.melentyev@phystech.edu
V. S. Stolyarov
Email: aleksandr.melentyev@phystech.edu
A. S. Frolov
Email: aleksandr.melentyev@phystech.edu
M. Savinov
Email: aleksandr.melentyev@phystech.edu
A. A Bush
Email: aleksandr.melentyev@phystech.edu
V. I. Kozlov
Email: aleksandr.melentyev@phystech.edu
B. P Gorshunov
Email: aleksandr.melentyev@phystech.edu
M. V Talanov
Список литературы
- J.H. Barrett, Phys. Rev. 86, 118 (1952).
- J. Petzelt, T. Ostapchuk, I. Gregora et al. (Collaboration), Phys. Rev. B 64, 184111 (2001).
- T. Ostapchuk, J. Petzelt, V. ˇZelezny et al. (Collaboration), Phys. Rev. B 66, 235406 (2002).
- J. Petzelt, T. Ostapchuk, I. Gregora, M. Savinov, D. Chvostova, J. Liu, and Z. Shen, J. Eur. Ceram. Soc. 26, 2855 (2006).
- M.V. Talanov, A. I. Stash, S.A. Ivanov, E. S. Zhukova, B. P. Gorshunov, B.M. Nekrasov, V. Stolyarov, V. Kozlov, M. Savinov, and A. Bush, J. Phys. Chem. Lett. 13, 11720 (2022).
- A. Tkach, P.M. Vilarinho, and A. Kholkin, Ferroelectrics 304, 87 (2004).
- M. Savinov, V.A. Trepakov, P.P. Syrnikov, V. ˇZelezny, J. Pokorny, A. Dejneka, L. Jastrabik, and P. Galinetto, J. Phys. Condens. Matter 20, 095221 (2008).
- A. Tkach, P.M. Vilarinho, A.L. Kholkin, A. Pashkin, S. Veljko, and J. Petzelt, Phys. Rev. B 73, 104113 (2006).
- S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, and D.M. Popovic, Chin. Phys. B 23, 026102 (2013).
- S. Kojima, 2022 Photonics & Electromagnetics Research Symposium (PIERS), IEEE, Hangzhou, China (2022).
- J. Petzelt and S. Kamba, Ferroelectrics 503, 19 (2016).
- I. Katayama, H. Shimosato, M. Ashida, I. Kawayama, M. Tonouchi, and T. Itoh, J. Lumin. 128, 998 (2008).
- E. S. Zhukova, B.M. Nekrasov, M. Tyunina et al. (Collaboration), J. Alloys Compd. 976, 173255 (2024).
Дополнительные файлы
