Linear Recurrent Equations in the Space of Convex Compact Sets and the Diameters of Their Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the space of convex compact sets with the Minkowski addition operation and the operation of multiplication of a matrix by a set, we consider linear recurrent equations of the first order. We give a complete description of such equations whose all solutions have a constant diameter. For equations of a special form, the Lyapunov exponents of the sequences of diameters of their solutions are calculated.

About the authors

A. S Voydelevich

Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, 220072, Belarus

Author for correspondence.
Email: aliaksei.vaidzelevich@gmail.com
Минск, Беларусь

References

  1. Hukuhara M. Integration des applications measurables dont la valeur est un compact convexe // Funk. Ekv. 1967. V. 10. P. 205-223.
  2. Lakshmikantham V., Gnana Bhaskar T., Vasundhara Devi J. Theory of Set Differential Equations in Metric Spaces. London, 2006.
  3. Очеретнюк Е.В., Слынько В.И. Качественный анализ решений нелинейных дифференциальных уравнений с производной Хукухары в пространстве $mathrm{conv}mathbb{R}^2$ // Дифференц. уравнения. 2015. Т. 51. № 8. С. 1004-1018.
  4. Атамась И.В., Слынько В.И. Формула Лиувилля-Остроградского для некоторых классов дифференциальных уравнений с производной Хукухары // Дифференц. уравнения. 2019. Т. 55. № 11. С. 1452-1464.
  5. Войделевич А.С. Стационарные линейные дифференциальные уравнения с производной Хукухары, сохраняющие многогранники // Дифференц. уравнения. 2020. Т. 56. № 12. С. 1695-1698.
  6. Войделевич А.С. Показатели Ляпунова радиусов вписанных и описанных сфер решений стационарных линейных дифференциальных уравнений с производной Хукухары // Дифференц. уравнения. 2021. Т. 57. № 4. С. 572-576.
  7. Войделевич А.С. Линейные дифференциальные уравнения с производной Хукухары, сохраняющие свойство постоянства ширины // Дифференц. уравнения. 2022. T. 58. № 1. С. 17-22.
  8. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., 2009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».