Asymptotics of Solutions of Linear Singularly Perturbed Optimal Control Problems with a Convex Integral Performance Index and a Cheap Control

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider an optimal control problem for a linear system with constant coefficients with an integral convex performance index containing a small parameter multiplying the integral term in the class of piecewise continuous controls with smooth geometric constraints. Such problems are called cheap control problems. It is shown that the limit problem will be a problem with a terminal performance index. It is established that if the terminal term of the performance index is a convex (strictly convex) and continuously differentiable function, then the performance functional in the limit problem has similar properties. It is proved that, in the general case, convergence with respect to the performance functional is valid, and under the condition of strict convexity of the terminal term of the performance index in the original problem, convergence to the minimum point of the terminal summand of the performance index in the limit problem is valid. The limit of the defining vector in the original problem is found as the small parameter tends to zero. In particular, it is shown that the first component of the defining vector in the original problem converges to the defining vector in the limit problem. The problems of controlling a point of low mass in a medium with and without resistance with a terminal part depending on both slow and fast variables are considered in detail, and complete asymptotic expansions of the defining vectors in these problems are constructed.

Sobre autores

A. Danilin

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia

Email: dar@imm.uran.ru

A. Shaburov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia

Autor responsável pela correspondência
Email: alexandershaburov@mail.ru

Bibliografia

  1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М., 1961.
  2. Красовский Н.Н. Теория управления движением. Линейные системы. М., 1968.
  3. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М., 1972.
  4. Дмитриев М.Г., Курина Г.А. Сингулярные возмущения в задачах управления // Автоматика и телемеханика. 2006. № 1. С. 3-51.
  5. Глизер В.Я., Дмитриев М.Г. Асимптотика решения одной сингулярно возмущённой задачи Коши, возникающей в теории оптимального управления // Дифференц. уравнения. 1978. Т. 14. № 4. С. 601-612.
  6. Калашникова М.А., Курина Г.А. Асимптотическое решение линейноквадратичных задач с дешевыми управлениями разной цены // Тр. Ин-та математики и механики УрО РАН. 2016. Т. 22. № 1. С. 124-139.
  7. Данилин А.Р., Ильин А.М. Асимптотическое поведение решения задачи быстродействия для линейной системы при возмущении начальных данных // Докл. РАН. 1996. Т. 350. № 2. С. 155-157.
  8. Данилин А.Р., Ильин А.М. О структуре решения одной возмущенной задачи быстродействия // Фунд. и прикл. математика. 1998. Т. 4. № 3. С. 905-926.
  9. Данилин А.Р., Коврижных О.О. Асимптотическое представление решения сингулярно возмущенной линейной задачи быстродействия // Тр. Ин-та математики и механики УрО РАН. 2012. Т. 18. № 2. С. 67-79.
  10. Дончев А. Системы оптимального управления: возмущения, приближения и анализ чувствительности. М., 1987.
  11. Благодатских В.И. Введение в оптимальное управление. М., 2001.
  12. Демьянов В.М., Васильев Л.В. Недифференцируемая оптимизация. М., 1981.
  13. Рокафеллар Р. Выпуклый анализ. М., 1973.
  14. Обен Ж.-П., Экланд И. Прикладной нелинейный анализ. М., 1988.
  15. Kokotovic P.V., Haddad A.H. Controllability and time-optimal control of systems with slow and fast modes // IEEE Trans. Automat. Control. 1975. V. 20. № 1. P. 111-113.
  16. Шабуров А.А. Асимптотическое разложение решения сингулярно возмущенной задачи оптимального управления с интегральным выпуклым критерием качества, терминальная часть которого зависит только от медленных переменных // Тр. Ин-та математики и механики УрО РАН. 2018. Т. 24. № 2. С. 280-289.
  17. Галеев Э.М., Тихомиров В.М. Краткий курс теории экстремальных задач. М., 1989.
  18. Данилин А.Р., Коврижных О.О. Асимптотика решения одной задачи быстродействия с неограниченным целевым множеством для линейной системы в критическом случае // Тр. Ин-та математики и механики УрО РАН. 2022. Т. 28. № 1. С. 58-73.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».