On a Nonlinear Second-Order Ordinary Differential Equation

Cover Page

Cite item

Full Text

Abstract

We consider a nonlinear second-order ordinary differential equation of a special form whose particular case arises when constructing exact solutions of the nonlinear heat equation with a power-law coefficient. Conditions are obtained for the parameters under which the equation admits a single integration. A number of examples of constructing exact solutions expressed in terms of elementary functions or in terms of the Lambert function are given.

About the authors

A. A Kosov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia

Email: kosov_idstu@mail.ru

E. I Semenov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033, Russia

Author for correspondence.
Email: edwseiz@gmail.com

References

  1. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М., 1971.
  2. Косов А.А., Семенов Э.И. О точных решениях уравнения нелинейной диффузии // Сиб. мат. журн. 2019. Т. 60. № 1. С. 123-140.
  3. Полянин А.Д., Зайцев В.Ф. Нелинейные уравнения математической физики: в 2 ч. Ч. 1. М., 2017.
  4. Полянин А.Д., Зайцев В.Ф. Справочник по обыкновенным дифференциальным уравнениям. М., 2001.
  5. Дубинов А.Е., Дубинова И.Д., Сайков С. W-функция Ламберта и её применение в математических задачах физики. Саров, 2006.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).